Ya. N. Gladchenko-Djevelekis, D. B. Tolchina, V. V. Srabionyan, V. A. Durymanov, L. A. Avakyan, L. A. Bugaev
{"title":"Machine Learning for Determining the Architecture of Ensembles of Bimetallic PtCu Nanoparticles Based on Atomic Radial Distribution Functions","authors":"Ya. N. Gladchenko-Djevelekis, D. B. Tolchina, V. V. Srabionyan, V. A. Durymanov, L. A. Avakyan, L. A. Bugaev","doi":"10.1134/S2635167623601304","DOIUrl":null,"url":null,"abstract":"<p>It is known that the catalytic properties of materials based on bimetallic PtCu nanoparticles depend on both the composition and the distribution of atoms in these particles. Therefore, the development of new materials with improved catalytic properties requires the application of an accurate and reliable experimental method for determining the architecture of nanoparticles (NPs) (random solid solution, Janus, core–shell or “gradient”). Our previous study demonstrated through machine-learning simulations that the architecture of single bimetallic nanoparticles can be determined using accurate theoretically calculated paired atomic radial distribution functions (RDFs), which can also be obtained from the most common sources of NP structural information, such as the X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques. This work is a logical continuation of the research mentioned above and is devoted to a theoretical study of the influence of errors in determining the RDFs, as well as the influence of the size and composition distributions of nanoparticles on the possibility of determining the architecture of nanoparticles from their RDFs.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 2","pages":"208 - 212"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167623601304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that the catalytic properties of materials based on bimetallic PtCu nanoparticles depend on both the composition and the distribution of atoms in these particles. Therefore, the development of new materials with improved catalytic properties requires the application of an accurate and reliable experimental method for determining the architecture of nanoparticles (NPs) (random solid solution, Janus, core–shell or “gradient”). Our previous study demonstrated through machine-learning simulations that the architecture of single bimetallic nanoparticles can be determined using accurate theoretically calculated paired atomic radial distribution functions (RDFs), which can also be obtained from the most common sources of NP structural information, such as the X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques. This work is a logical continuation of the research mentioned above and is devoted to a theoretical study of the influence of errors in determining the RDFs, as well as the influence of the size and composition distributions of nanoparticles on the possibility of determining the architecture of nanoparticles from their RDFs.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.