{"title":"Advancements and assessment of compressed carbon dioxide energy storage technologies: a comprehensive review","authors":"Hailing Ma, Yao Tong, Xiao Wang and Hongxu Wang","doi":"10.1039/D4SU00211C","DOIUrl":null,"url":null,"abstract":"<p >Compressed carbon dioxide energy storage (CCES) emerges as a promising alternative among various energy storage solutions due to its numerous advantages, including straightforward liquefaction, superior energy storage density, and environmental compatibility. This review delves into the recent advancements, economic viability, technological feasibilities, and operational aspects of CCES systems comprehensively. It encapsulates the evaluation methodologies, examines the intricacies of compressed carbon dioxide storage, and explores the avenues for performance optimization within CCES technology. A comparative analysis reveals that among <em>trans</em>-critical, supercritical, and liquid CCES systems, the supercritical variant exhibits enhanced thermodynamic properties and a more straightforward configuration, positioning it as the preferred choice for large-scale applications. Additionally, this review incorporates recent advancements in CO<small><sub>2</sub></small>-related conversion technologies, such as photocatalytic and photothermal CO<small><sub>2</sub></small> reduction, which further enhance the potential of CCES systems. The review highlights the future direction for CCES development, emphasizing the need for optimal compression–expansion ratios, refined analytical models, and integrated multi-disciplinary approaches. This discussion aims to serve as a foundational reference for the effective design and implementation of CCES systems.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 2731-2750"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00211c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00211c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Compressed carbon dioxide energy storage (CCES) emerges as a promising alternative among various energy storage solutions due to its numerous advantages, including straightforward liquefaction, superior energy storage density, and environmental compatibility. This review delves into the recent advancements, economic viability, technological feasibilities, and operational aspects of CCES systems comprehensively. It encapsulates the evaluation methodologies, examines the intricacies of compressed carbon dioxide storage, and explores the avenues for performance optimization within CCES technology. A comparative analysis reveals that among trans-critical, supercritical, and liquid CCES systems, the supercritical variant exhibits enhanced thermodynamic properties and a more straightforward configuration, positioning it as the preferred choice for large-scale applications. Additionally, this review incorporates recent advancements in CO2-related conversion technologies, such as photocatalytic and photothermal CO2 reduction, which further enhance the potential of CCES systems. The review highlights the future direction for CCES development, emphasizing the need for optimal compression–expansion ratios, refined analytical models, and integrated multi-disciplinary approaches. This discussion aims to serve as a foundational reference for the effective design and implementation of CCES systems.