Bimetallic CuPd Nanoparticles Supported on ZnO or Graphene for CO2 and CO Conversion to Methane and Methanol

Qaisar Maqbool, Klaus Dobrezberger, Julian Stropp, Martin Huber, Karl-Leopold Kontrus, Anna Aspalter, Julie Neuhauser, Thomas Schachinger, Stefan Löffler, Günther Rupprechter
{"title":"Bimetallic CuPd Nanoparticles Supported on ZnO or Graphene for CO2 and CO Conversion to Methane and Methanol","authors":"Qaisar Maqbool, Klaus Dobrezberger, Julian Stropp, Martin Huber, Karl-Leopold Kontrus, Anna Aspalter, Julie Neuhauser, Thomas Schachinger, Stefan Löffler, Günther Rupprechter","doi":"10.1039/d4su00339j","DOIUrl":null,"url":null,"abstract":"Carbon dioxide (CO2) and carbon monoxide (CO) hydrogenation to methane (CH4) or methanol (CH3OH) is a promising pathway to reduce CO2 emissions and to migitate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO), as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized via various methodologies. The prepared catalysts underwent comprehensive characterization via high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H2-TPR, -TPD), and deuterium temperature-programmed desorption (D2O-TPD). In the CO2 hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500°C), Cu, Pd, and CuPd NPs (<5wt.% loading) supported on ZnO or graphene predominantly yielded CH4 as primary product, with CO generated as a byproduct via the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500°C , the CO conversion was at least 40% higher than that of CO2 conversion, with CH4 and CO2 identified as main products, the latter from water gas shift. Employing 90wt.% Cu on ZnO led to an enhanced CO conversion of 14%, with the CH3OH yield reaching 10% and the CO2 yield reaching 4.3% at 230°C. Overall, the results demonstrate that lower Cu/Pd loading (<5wt.%) supported on ZnO/graphene favored CH4 production, while higher Cu content (90wt.%) promoted CH3OH production, both for CO2 and CO hydrogenation at high pressure.","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4su00339j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) and carbon monoxide (CO) hydrogenation to methane (CH4) or methanol (CH3OH) is a promising pathway to reduce CO2 emissions and to migitate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO), as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized via various methodologies. The prepared catalysts underwent comprehensive characterization via high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H2-TPR, -TPD), and deuterium temperature-programmed desorption (D2O-TPD). In the CO2 hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500°C), Cu, Pd, and CuPd NPs (<5wt.% loading) supported on ZnO or graphene predominantly yielded CH4 as primary product, with CO generated as a byproduct via the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500°C , the CO conversion was at least 40% higher than that of CO2 conversion, with CH4 and CO2 identified as main products, the latter from water gas shift. Employing 90wt.% Cu on ZnO led to an enhanced CO conversion of 14%, with the CH3OH yield reaching 10% and the CO2 yield reaching 4.3% at 230°C. Overall, the results demonstrate that lower Cu/Pd loading (<5wt.%) supported on ZnO/graphene favored CH4 production, while higher Cu content (90wt.%) promoted CH3OH production, both for CO2 and CO hydrogenation at high pressure.
以氧化锌或石墨烯为支撑的双金属铜钯纳米颗粒用于将二氧化碳和一氧化碳转化为甲烷和甲醇
将二氧化碳(CO2)和一氧化碳(CO)加氢转化为甲烷(CH4)或甲醇(CH3OH)是减少二氧化碳排放和摆脱对快速枯竭的化石燃料依赖的一条可行途径。根据这一思路,研究人员通过各种方法合成了一系列催化剂,包括以氧化锌(ZnO)为载体的铜(Cu)或钯(Pd)纳米颗粒(NPs),以及以 ZnO 或石墨烯为载体的双金属 CuPd NPs。制备的催化剂通过高分辨率透射电子显微镜(HRTEM)、能量色散 X 射线光谱(EDX)图谱、电子能量损失光谱(EELS)、X 射线衍射(XRD)、氢温度编程还原和解吸(H2-TPR,-TPD)以及氘温度编程解吸(D2O-TPD)进行了全面表征。在 20 巴和高温(300 至 500 摄氏度)条件下进行的 CO2 加氢过程中,ZnO 或石墨烯上的 Cu、Pd 和 CuPd NPs(5wt.% 负载)主要以 CH4 为主要产物,而 CO 则通过反向水气变换(RWGS)反应作为副产物生成。在 400 至 500°C 的 CO 加氢过程中,CO 的转化率比 CO2 的转化率高出至少 40%,CH4 和 CO2 被确定为主要产物,后者来自水气变换。在氧化锌上使用 90wt.% 的铜可使 CO 转化率提高 14%,在 230°C 时,CH3OH 产率达到 10%,CO2 产率达到 4.3%。总之,研究结果表明,ZnO/石墨烯上较低的铜/钯负载量(<5wt.%)有利于产生 CH4,而较高的铜含量(90wt.%)则促进了 CH3OH 的产生,无论是 CO2 还是 CO 在高压下的氢化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信