Task-specific boronium ionic liquids as ashless lubricant additives†

Novina Malviya, Farah Fazlina M. Yasin, Maria Teresa Sateriale, Fergal Coleman, H. Q. Nimal Gunaratne, Andrea Dolfi, Geetha Srinivasan and Małgorzata Swadźba-Kwaśny
{"title":"Task-specific boronium ionic liquids as ashless lubricant additives†","authors":"Novina Malviya, Farah Fazlina M. Yasin, Maria Teresa Sateriale, Fergal Coleman, H. Q. Nimal Gunaratne, Andrea Dolfi, Geetha Srinivasan and Małgorzata Swadźba-Kwaśny","doi":"10.1039/D4SU00451E","DOIUrl":null,"url":null,"abstract":"<p >Modern engines are designed for very close contact between shearing planes, which requires high-performance boundary lubrication, delivered by lubricant base oils formulated with an array of additives. Commercial additive packages typically contain metals, sulfur, and phosphorus, which act as poisons to catalytic converters (thereby increasing emissions), increase wear and contribute to corrosion (which lowers the lifespan of engines). Ionic liquids (ILs), which are low-melting organic salts, have been extensively studied as lubricant additives; although some commercially available ionic liquids perform well as friction modifiers, they suffer from low solubility in the oil matrix and may cause corrosion due to residual chloride content. Here, we report nine new, task-specific ionic liquids, designed to act as ashless lubricant additives, comprising boron-containing cations for enhanced wear reduction, carboxylic acid anions to reduce friction, and modified alkyl chains to enhance solubility in the base oil. All ILs were inherently free from metals, sulfur, and phosphorus, and synthesised through a halide-free route. Their speciation was studied through multinuclear NMR and Raman spectroscopies, followed by studies of solubility in Group III+ base oil. Their performance as lubricant additives was assessed in terms of friction reduction and wear scar reduction, benchmarked against glycerol mono-oleate (GMO), a commercially availabe lubricant additive.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 3100-3113"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00451e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00451e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern engines are designed for very close contact between shearing planes, which requires high-performance boundary lubrication, delivered by lubricant base oils formulated with an array of additives. Commercial additive packages typically contain metals, sulfur, and phosphorus, which act as poisons to catalytic converters (thereby increasing emissions), increase wear and contribute to corrosion (which lowers the lifespan of engines). Ionic liquids (ILs), which are low-melting organic salts, have been extensively studied as lubricant additives; although some commercially available ionic liquids perform well as friction modifiers, they suffer from low solubility in the oil matrix and may cause corrosion due to residual chloride content. Here, we report nine new, task-specific ionic liquids, designed to act as ashless lubricant additives, comprising boron-containing cations for enhanced wear reduction, carboxylic acid anions to reduce friction, and modified alkyl chains to enhance solubility in the base oil. All ILs were inherently free from metals, sulfur, and phosphorus, and synthesised through a halide-free route. Their speciation was studied through multinuclear NMR and Raman spectroscopies, followed by studies of solubility in Group III+ base oil. Their performance as lubricant additives was assessed in terms of friction reduction and wear scar reduction, benchmarked against glycerol mono-oleate (GMO), a commercially availabe lubricant additive.

Abstract Image

作为无灰润滑油添加剂的特定任务硼离子液体
现代发动机的设计要求剪切面之间的接触非常紧密,这就需要使用添加了各种添加剂的润滑油基础油来提供高性能的边界润滑。商用复合添加剂通常含有金属、硫和磷,这些物质会对催化转换器造成毒害(从而增加排放)、增加磨损并导致腐蚀(降低发动机寿命)。离子液体(ILs)是一种低熔点有机盐,作为润滑油添加剂已被广泛研究;虽然一些市售离子液体作为摩擦改进剂性能良好,但它们在机油基质中的溶解度较低,并可能因残留氯化物含量而引起腐蚀。在此,我们报告了九种新型、针对特定任务设计的离子液体,它们可用作无灰润滑油添加剂,其中包括:含硼阳离子,可增强减磨效果;羧酸阴离子,可减少摩擦;改性烷基链,可提高在基础油中的溶解度。所有 IL 本身都不含金属、硫和磷,并且是通过无卤路线合成的。通过多核核磁共振和拉曼光谱研究了它们的标示,随后研究了它们在 III+ 族基础油中的溶解度。通过与市售润滑油添加剂甘油单油酸酯(GMO)进行对比,从降低摩擦和减少磨损疤痕的角度评估了它们作为润滑油添加剂的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信