Sharp Sobolev inequalities on noncompact Riemannian manifolds with $$\textsf{Ric}\ge 0$$ via optimal transport theory

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexandru Kristály
{"title":"Sharp Sobolev inequalities on noncompact Riemannian manifolds with $$\\textsf{Ric}\\ge 0$$ via optimal transport theory","authors":"Alexandru Kristály","doi":"10.1007/s00526-024-02810-9","DOIUrl":null,"url":null,"abstract":"<p>In their seminal work, Cordero-Erausquin, Nazaret and Villani (Adv Math 182(2):307-332, 2004) proved sharp Sobolev inequalities in Euclidean spaces via <i>Optimal Transport</i>, raising the question whether their approach is powerful enough to produce sharp Sobolev inequalities also on Riemannian manifolds. By using <span>\\(L^1\\)</span>-optimal transport approach, the compact case has been successfully treated by Cavalletti and Mondino (Geom Topol 21:603-645, 2017), even on metric measure spaces verifying the synthetic lower Ricci curvature bound. In the present paper we affirmatively answer the above question for noncompact Riemannian manifolds with non-negative Ricci curvature; namely, by using Optimal Transport theory with quadratic distance cost, sharp <span>\\(L^p\\)</span>-Sobolev and <span>\\(L^p\\)</span>-logarithmic Sobolev inequalities (both for <span>\\(p&gt;1\\)</span> and <span>\\(p=1\\)</span>) are established, where the sharp constants contain the <i>asymptotic volume ratio</i> arising from precise asymptotic properties of the Talentian and Gaussian bubbles, respectively. As a byproduct, we give an alternative, elementary proof to the main result of do Carmo and Xia (Math 140:818-826, 2004) and subsequent results, concerning the quantitative volume non-collapsing estimates on Riemannian manifolds with non-negative Ricci curvature that support Sobolev inequalities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02810-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In their seminal work, Cordero-Erausquin, Nazaret and Villani (Adv Math 182(2):307-332, 2004) proved sharp Sobolev inequalities in Euclidean spaces via Optimal Transport, raising the question whether their approach is powerful enough to produce sharp Sobolev inequalities also on Riemannian manifolds. By using \(L^1\)-optimal transport approach, the compact case has been successfully treated by Cavalletti and Mondino (Geom Topol 21:603-645, 2017), even on metric measure spaces verifying the synthetic lower Ricci curvature bound. In the present paper we affirmatively answer the above question for noncompact Riemannian manifolds with non-negative Ricci curvature; namely, by using Optimal Transport theory with quadratic distance cost, sharp \(L^p\)-Sobolev and \(L^p\)-logarithmic Sobolev inequalities (both for \(p>1\) and \(p=1\)) are established, where the sharp constants contain the asymptotic volume ratio arising from precise asymptotic properties of the Talentian and Gaussian bubbles, respectively. As a byproduct, we give an alternative, elementary proof to the main result of do Carmo and Xia (Math 140:818-826, 2004) and subsequent results, concerning the quantitative volume non-collapsing estimates on Riemannian manifolds with non-negative Ricci curvature that support Sobolev inequalities.

通过最优传输理论在$textsf{Ric}\ge 0$$ 的非紧凑黎曼流形上实现尖锐索波列夫不等式
在他们的开创性工作中,Cordero-Erausquin、Nazaret 和 Villani(Adv Math 182(2):307-332, 2004)通过最优传输证明了欧几里得空间中尖锐的索波列夫不等式,这就提出了一个问题:他们的方法是否足以在黎曼流形上也产生尖锐的索波列夫不等式。卡瓦莱蒂和蒙迪诺(Geom Topol 21:603-645,2017)通过使用(L^1\)最优传输方法,成功地处理了紧凑情况,甚至在公度量空间上验证了合成的里奇曲率下限。在本文中,我们肯定地回答了具有非负里奇曲率的非紧凑黎曼流形的上述问题;即通过使用具有二次距离代价的最优传输理论、尖锐的 \(L^p\)-Sobolev 和 \(L^p\)-logarithmic Sobolev 不等式(均适用于 \(p>;1)和 \(p=1)),其中尖锐常数分别包含由塔伦泡和高斯泡的精确渐近特性产生的渐近体积比。作为副产品,我们给出了 do Carmo 和 Xia 的主要结果(Math 140:818-826, 2004)及其后续结果的另一种基本证明,涉及支持索波列夫不等式的具有非负里奇曲率的黎曼流形上的定量体积非坍缩估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信