Interior Hölder estimate for the linearized complex Monge–Ampère equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yulun Xu
{"title":"Interior Hölder estimate for the linearized complex Monge–Ampère equation","authors":"Yulun Xu","doi":"10.1007/s00526-024-02814-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(w_0\\)</span> be a bounded, <span>\\(C^3\\)</span>, strictly plurisubharmonic function defined on <span>\\(B_1\\subset \\mathbb {C}^n\\)</span>. Then <span>\\(w_0\\)</span> has a neighborhood in <span>\\(L^{\\infty }(B_1)\\)</span>. Suppose that we have a function <span>\\(\\phi \\)</span> in this neighborhood with <span>\\(1-\\varepsilon \\le MA(\\phi )\\le 1+\\varepsilon \\)</span> and there exists a function <i>u</i> solving the linearized complex Monge–Amp<span>\\(\\grave{\\text {e}}\\)</span>re equation: <span>\\(det(\\phi _{k\\bar{l}})\\phi ^{i\\bar{j}}u_{i\\bar{j}}=0\\)</span>. Then there exist constants <span>\\(\\alpha &gt;0\\)</span> and <i>C</i> such that <span>\\(|u|_{C^{\\alpha }(B_{\\frac{1}{2}}(0))}\\le C\\)</span>, where <span>\\(\\alpha &gt;0\\)</span> depends on <i>n</i> and <i>C</i> depends on <i>n</i> and <span>\\(|u|_{L^{\\infty }(B_1(0))}\\)</span>, as long as <span>\\(\\epsilon \\)</span> is small depending on <i>n</i>. This partially generalizes Caffarelli–Gutierrez’s estimate for linearized real Monge–Amp<span>\\(\\grave{\\text {e}}\\)</span>re equation to the complex version.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02814-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(w_0\) be a bounded, \(C^3\), strictly plurisubharmonic function defined on \(B_1\subset \mathbb {C}^n\). Then \(w_0\) has a neighborhood in \(L^{\infty }(B_1)\). Suppose that we have a function \(\phi \) in this neighborhood with \(1-\varepsilon \le MA(\phi )\le 1+\varepsilon \) and there exists a function u solving the linearized complex Monge–Amp\(\grave{\text {e}}\)re equation: \(det(\phi _{k\bar{l}})\phi ^{i\bar{j}}u_{i\bar{j}}=0\). Then there exist constants \(\alpha >0\) and C such that \(|u|_{C^{\alpha }(B_{\frac{1}{2}}(0))}\le C\), where \(\alpha >0\) depends on n and C depends on n and \(|u|_{L^{\infty }(B_1(0))}\), as long as \(\epsilon \) is small depending on n. This partially generalizes Caffarelli–Gutierrez’s estimate for linearized real Monge–Amp\(\grave{\text {e}}\)re equation to the complex version.

线性化复蒙日-安培方程的内部荷尔德估计
让 \(w_0\) 是定义在 \(B_1\subset \mathbb {C}^n\) 上的有界、(C^3\)、严格的多重谐函数。那么 \(w_0\) 在 \(L^{\infty }(B_1)\) 中有一个邻域。假设我们在这个邻域中有一个函数\(\phi\),其值为\(1-\varepsilon \le MA(\phi )\le 1+\varepsilon \),并且存在一个函数u可以求解线性化复数Monge-Amp\ (\grave\text {e}}\)方程:\det(\phi _{k\bar{l}})\phi ^{i\bar{j}}u_{i\bar{j}}=0\).然后存在常数 \(\alpha >0\) 和 C,使得 \(|u|_{C^{\alpha }(B_{\frac{1}{2}}(0))}\le C\), 其中 \(\alpha >;0)取决于 n,而 C 取决于 n 和 \(|u|_{L^{\infty}(B_1(0))}\),只要 \(\epsilon \)很小,取决于 n。这就将卡法雷利-古铁雷斯对线性化实数 Monge-Amp\(\grave\text {e}}\)re方程的估计部分推广到了复数版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信