{"title":"Singularities of the hyperbolic elastic flow: convergence, quantization and blow-ups","authors":"Manuel Schlierf","doi":"10.1007/s00526-024-02815-4","DOIUrl":null,"url":null,"abstract":"<p>We study the elastic flow of closed curves and of open curves with clamped boundary conditions in the hyperbolic plane. While global existence and convergence toward critical points for initial data with sufficiently small energy is already known, this study pioneers an investigation into the flow’s singular behavior. We prove a convergence theorem without assuming smallness of the initial energy, coupled with a quantification of potential singularities: Each singularity carries an energy cost of at least 8. Moreover, the blow-ups of the singularities are explicitly classified. A further contribution is an explicit understanding of the singular limit of the elastic flow of <span>\\(\\lambda \\)</span>-figure-eights, a class of curves that previously served in showing sharpness of the energy threshold 16 for the smooth convergence of the elastic flow of closed curves.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02815-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the elastic flow of closed curves and of open curves with clamped boundary conditions in the hyperbolic plane. While global existence and convergence toward critical points for initial data with sufficiently small energy is already known, this study pioneers an investigation into the flow’s singular behavior. We prove a convergence theorem without assuming smallness of the initial energy, coupled with a quantification of potential singularities: Each singularity carries an energy cost of at least 8. Moreover, the blow-ups of the singularities are explicitly classified. A further contribution is an explicit understanding of the singular limit of the elastic flow of \(\lambda \)-figure-eights, a class of curves that previously served in showing sharpness of the energy threshold 16 for the smooth convergence of the elastic flow of closed curves.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.