Singularities of the hyperbolic elastic flow: convergence, quantization and blow-ups

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Manuel Schlierf
{"title":"Singularities of the hyperbolic elastic flow: convergence, quantization and blow-ups","authors":"Manuel Schlierf","doi":"10.1007/s00526-024-02815-4","DOIUrl":null,"url":null,"abstract":"<p>We study the elastic flow of closed curves and of open curves with clamped boundary conditions in the hyperbolic plane. While global existence and convergence toward critical points for initial data with sufficiently small energy is already known, this study pioneers an investigation into the flow’s singular behavior. We prove a convergence theorem without assuming smallness of the initial energy, coupled with a quantification of potential singularities: Each singularity carries an energy cost of at least 8. Moreover, the blow-ups of the singularities are explicitly classified. A further contribution is an explicit understanding of the singular limit of the elastic flow of <span>\\(\\lambda \\)</span>-figure-eights, a class of curves that previously served in showing sharpness of the energy threshold 16 for the smooth convergence of the elastic flow of closed curves.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02815-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the elastic flow of closed curves and of open curves with clamped boundary conditions in the hyperbolic plane. While global existence and convergence toward critical points for initial data with sufficiently small energy is already known, this study pioneers an investigation into the flow’s singular behavior. We prove a convergence theorem without assuming smallness of the initial energy, coupled with a quantification of potential singularities: Each singularity carries an energy cost of at least 8. Moreover, the blow-ups of the singularities are explicitly classified. A further contribution is an explicit understanding of the singular limit of the elastic flow of \(\lambda \)-figure-eights, a class of curves that previously served in showing sharpness of the energy threshold 16 for the smooth convergence of the elastic flow of closed curves.

Abstract Image

双曲弹性流的奇点:收敛、量化和炸裂
我们研究了双曲面中封闭曲线的弹性流和具有钳制边界条件的开放曲线的弹性流。虽然对于能量足够小的初始数据,全局存在性和向临界点的收敛性已经为人所知,但本研究开创性地研究了流动的奇异行为。我们在不假设初始能量很小的情况下证明了收敛定理,并对潜在奇点进行了量化:每个奇点的能量成本至少为 8。此外,还对奇点的炸毁进行了明确分类。另一个贡献是明确理解了 \(\lambda \)-figure-eights弹性流的奇异极限,这一类曲线以前曾用于显示封闭曲线弹性流平稳收敛的能量阈值 16 的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信