Asymptotic behavior of $$L^2$$ -subcritical relativistic Fermi systems in the nonrelativistic limit

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bin Chen, Yujin Guo, Haoquan Liu
{"title":"Asymptotic behavior of $$L^2$$ -subcritical relativistic Fermi systems in the nonrelativistic limit","authors":"Bin Chen, Yujin Guo, Haoquan Liu","doi":"10.1007/s00526-024-02816-3","DOIUrl":null,"url":null,"abstract":"<p>We study ground states of a relativistic Fermi system involved with the pseudo-differential operator <span>\\(\\sqrt{-c^2\\Delta +c^4m^2}-c^2m\\)</span> in the <span>\\(L^2\\)</span>-subcritical case, where <span>\\(m&gt;0\\)</span> denotes the rest mass of fermions, and <span>\\(c\\ge 1\\)</span> represents the speed of light. By employing Green’s function and the variational principle of many-fermion systems, we prove the existence of ground states for the system. The asymptotic behavior of ground states for the system is also analyzed in the non-relativistic limit where <span>\\(c\\rightarrow \\infty \\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02816-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study ground states of a relativistic Fermi system involved with the pseudo-differential operator \(\sqrt{-c^2\Delta +c^4m^2}-c^2m\) in the \(L^2\)-subcritical case, where \(m>0\) denotes the rest mass of fermions, and \(c\ge 1\) represents the speed of light. By employing Green’s function and the variational principle of many-fermion systems, we prove the existence of ground states for the system. The asymptotic behavior of ground states for the system is also analyzed in the non-relativistic limit where \(c\rightarrow \infty \).

非相对论极限下 $$L^2$$ - 次临界相对论费米系统的渐近行为
我们研究了在\(L^2\)-次临界情况下涉及伪差分算子\(\sqrt{-c^2\Delta +c^4m^2}-c^2m\) 的相对论费米系统的基态,其中\(m>0\)表示费米子的静止质量,\(c\ge 1\) 表示光速。通过运用格林函数和多费米子系统的变分原理,我们证明了系统基态的存在。我们还分析了在非相对论极限下系统基态的渐近行为,其中 \(c\rightarrow \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信