BayesQuantify: an R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework

Sihan Liu, Xiaoshu Feng, Fengxiao Bu
{"title":"BayesQuantify: an R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework","authors":"Sihan Liu, Xiaoshu Feng, Fengxiao Bu","doi":"10.1101/2024.09.08.24313284","DOIUrl":null,"url":null,"abstract":"Improving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developed BayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrate BayesQuantify's capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub at https://github.com/liusihan/BayesQuantify.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.24313284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developed BayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrate BayesQuantify's capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub at https://github.com/liusihan/BayesQuantify.
BayesQuantify:R软件包,用于根据贝叶斯框架完善ACMG/AMP标准
要提高临床基因检测中变异体分类的精确度和准确性,就必须进一步规范和分层 ACMG/AMP 标准。ClinGen 提出的贝叶斯框架为证据细化提供了数学基础,成功量化并扩展了 PS1、PS4、PM5 和 PP3/BP4 的证据强度。然而,目前还缺乏用于量化证据强度和建立相应阈值以完善 ACMG/AMP 标准的软件和工具。为了填补这一空白,我们开发了贝叶斯量化软件包(BayesQuantify),旨在为用户提供统一的资源,利用天真贝叶斯分类器量化 ACMG/AMP 标准的证据强度。通过分析公开数据,我们展示了 BayesQuantify 客观、一致地完善 ACMG/AMP 证据的能力。BayesQuantify 可从 GitHub 上获取,网址是 https://github.com/liusihan/BayesQuantify。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信