Meysam Tayebi, Zohreh Masoumi, Hyungwoo Lee, Daehyeon Hong, Bongkuk Seo, Choong-Sun Lim, Daeseung Kyung, Hyeon-Gook Kim
{"title":"MOF-Derived FeCoO/N-Doped C Bifunctional Electrode for H2 Production Through Water and Glucose Electrolysis","authors":"Meysam Tayebi, Zohreh Masoumi, Hyungwoo Lee, Daehyeon Hong, Bongkuk Seo, Choong-Sun Lim, Daeseung Kyung, Hyeon-Gook Kim","doi":"10.1002/adsu.202400342","DOIUrl":null,"url":null,"abstract":"<p>The glucose oxidation reaction (GOR) is a potential alternative to water oxidation because of its relatively low thermodynamic potential and the high availability of glucose. Herein, a FeCoO/N-doped C electrode derived from metal–organic framework (MOF) materials is applied, which is synthesized in several steps through the controlled deposition of Fe–Co oxide nanocatalysts onto Co –N-doped C nanofibers on a Ni foam substrate and demonstrate exceptional electrocatalytic activity for both the GOR and overall water splitting. Here, a bifunctional electrocatalyst derived from MOF, FeCoO/N-doped C is reported, for glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). The MOF-derived FeCoO/N-doped C (+/-) as a bifunctional electrocatalyst exhibits a cell voltage of 1.4 V for the GOR&HER, to reach a current density of 10 mA cm<sup>−2</sup>, which is 280 mV lower than that for the oxygen evolution reaction (OER)&HER (1.68 V). This study reveals that GOR is an energy-efficient and affordable source of H<sub>2</sub> and value-added chemicals.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 11","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400342","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The glucose oxidation reaction (GOR) is a potential alternative to water oxidation because of its relatively low thermodynamic potential and the high availability of glucose. Herein, a FeCoO/N-doped C electrode derived from metal–organic framework (MOF) materials is applied, which is synthesized in several steps through the controlled deposition of Fe–Co oxide nanocatalysts onto Co –N-doped C nanofibers on a Ni foam substrate and demonstrate exceptional electrocatalytic activity for both the GOR and overall water splitting. Here, a bifunctional electrocatalyst derived from MOF, FeCoO/N-doped C is reported, for glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). The MOF-derived FeCoO/N-doped C (+/-) as a bifunctional electrocatalyst exhibits a cell voltage of 1.4 V for the GOR&HER, to reach a current density of 10 mA cm−2, which is 280 mV lower than that for the oxygen evolution reaction (OER)&HER (1.68 V). This study reveals that GOR is an energy-efficient and affordable source of H2 and value-added chemicals.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.