Jacob S. Christiansen, Benjamin Eichinger, Olof Rubin
{"title":"Extremal Polynomials and Sets of Minimal Capacity","authors":"Jacob S. Christiansen, Benjamin Eichinger, Olof Rubin","doi":"10.1007/s00365-024-09690-4","DOIUrl":null,"url":null,"abstract":"<p>This article examines the asymptotic behavior of the Widom factors, denoted <span>\\({\\mathcal {W}}_n\\)</span>, for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom’s proposal in Widom (Adv Math 3:127–232, 1969), when dealing with a single smooth Jordan arc, <span>\\({\\mathcal {W}}_n\\)</span> converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval <span>\\([-2,2]\\)</span>, and we provide a complete description of the asymptotic behavior of <span>\\({\\mathcal {W}}_n\\)</span> for symmetric star graphs and quadratic preimages of <span>\\([-2,2]\\)</span>. We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of the conjecture posed in Christiansen et al. (Oper Theory Adv Appl 289:301–319, 2022). Lastly, we propose a possible connection between the <i>S</i>-property and Widom factors converging to 2.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09690-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This article examines the asymptotic behavior of the Widom factors, denoted \({\mathcal {W}}_n\), for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom’s proposal in Widom (Adv Math 3:127–232, 1969), when dealing with a single smooth Jordan arc, \({\mathcal {W}}_n\) converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval \([-2,2]\), and we provide a complete description of the asymptotic behavior of \({\mathcal {W}}_n\) for symmetric star graphs and quadratic preimages of \([-2,2]\). We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of the conjecture posed in Christiansen et al. (Oper Theory Adv Appl 289:301–319, 2022). Lastly, we propose a possible connection between the S-property and Widom factors converging to 2.