Extremal Polynomials and Sets of Minimal Capacity

IF 2.3 2区 数学 Q1 MATHEMATICS
Jacob S. Christiansen, Benjamin Eichinger, Olof Rubin
{"title":"Extremal Polynomials and Sets of Minimal Capacity","authors":"Jacob S. Christiansen, Benjamin Eichinger, Olof Rubin","doi":"10.1007/s00365-024-09690-4","DOIUrl":null,"url":null,"abstract":"<p>This article examines the asymptotic behavior of the Widom factors, denoted <span>\\({\\mathcal {W}}_n\\)</span>, for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom’s proposal in Widom (Adv Math 3:127–232, 1969), when dealing with a single smooth Jordan arc, <span>\\({\\mathcal {W}}_n\\)</span> converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval <span>\\([-2,2]\\)</span>, and we provide a complete description of the asymptotic behavior of <span>\\({\\mathcal {W}}_n\\)</span> for symmetric star graphs and quadratic preimages of <span>\\([-2,2]\\)</span>. We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of the conjecture posed in Christiansen et al. (Oper Theory Adv Appl 289:301–319, 2022). Lastly, we propose a possible connection between the <i>S</i>-property and Widom factors converging to 2.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"49 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09690-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines the asymptotic behavior of the Widom factors, denoted \({\mathcal {W}}_n\), for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom’s proposal in Widom (Adv Math 3:127–232, 1969), when dealing with a single smooth Jordan arc, \({\mathcal {W}}_n\) converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval \([-2,2]\), and we provide a complete description of the asymptotic behavior of \({\mathcal {W}}_n\) for symmetric star graphs and quadratic preimages of \([-2,2]\). We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of the conjecture posed in Christiansen et al. (Oper Theory Adv Appl 289:301–319, 2022). Lastly, we propose a possible connection between the S-property and Widom factors converging to 2.

Abstract Image

极值多项式和最小容量集
本文研究了约旦弧的有限联合的切比雪夫多项式的维多姆因子的渐近行为,用 \({\mathcal {W}}_n\) 表示。我们证明,与维多姆在 Widom (Adv Math 3:127-232, 1969) 中提出的建议相反,当处理单个光滑的约旦弧时,\({\mathcal {W}}_n\) 只在弧是直线段时收敛到 2。我们的主要重点是分析区间 \([-2,2]\) 的多项式预映像,并完整地描述了对称星形图和\([-2,2]\) 的二次预映像的 \({\mathcal {W}}_n\) 的渐近行为。我们观察到,在星形图的情况下,切比雪夫多项式和关于均衡度量的正交多项式具有相同的规范渐近性,这表明 Christiansen 等人(Oper Theory Adv Appl 289:301-319, 2022)中提出的猜想具有潜在的扩展性。最后,我们提出了 S 特性与收敛于 2 的 Widom 因子之间可能存在的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信