Effect of solution-processed cesium carbonate on Cu(In,Ga)Se2 thin-film solar cells

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ishwor Khatri, Alec P. LaGrow, Oleksandr Bondarchuk, Nicoleta Nicoara, Sascha Sadewasser
{"title":"Effect of solution-processed cesium carbonate on Cu(In,Ga)Se2 thin-film solar cells","authors":"Ishwor Khatri,&nbsp;Alec P. LaGrow,&nbsp;Oleksandr Bondarchuk,&nbsp;Nicoleta Nicoara,&nbsp;Sascha Sadewasser","doi":"10.1002/pip.3838","DOIUrl":null,"url":null,"abstract":"<p>Heavy alkali-metal treatments have been the most recent breakthrough in improving the efficiency of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells. Alkali halides are generally evaporated onto the surface of the CIGS thin film by a vacuum process. Here, we report an alternative, low-cost solution process for the surface treatment of CIGS thin films using cesium carbonate (CsCO<sub>3</sub>) as a new route to incorporate cesium (Cs) for improving solar cell performance. CIGS thin films were fabricated using pulsed hybrid reactive magnetron sputtering and the surface treatment was performed by spin-coating CsCO<sub>3</sub> solution on the surface of CIGS at room temperature, followed by vacuum annealing at 400°C. The surface chemistry of the CIGS thin film changed after the treatment and the efficiency of respective solar cells improved by more than 30%, mostly driven by an enhancement in open-circuit voltage. X-ray photoelectron spectroscopy revealed the depletion of copper and the presence of Cs on the surface of the CIGS thin film. Ultraviolet photoelectron spectroscopy showed the lowering of the valence band maximum by around 0.25 eV after the treatment, which plays a positive role in reducing interfacial recombination. High-resolution transmission electron microscopy indicates the presence of Cs and depletion of Cu at the grain boundaries of the CIGS thin film. These findings open a low-cost route for improving the performance of CIGS solar cells by surface modification using a solution process.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"864-871"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3838","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy alkali-metal treatments have been the most recent breakthrough in improving the efficiency of Cu(In,Ga)Se2 (CIGS) solar cells. Alkali halides are generally evaporated onto the surface of the CIGS thin film by a vacuum process. Here, we report an alternative, low-cost solution process for the surface treatment of CIGS thin films using cesium carbonate (CsCO3) as a new route to incorporate cesium (Cs) for improving solar cell performance. CIGS thin films were fabricated using pulsed hybrid reactive magnetron sputtering and the surface treatment was performed by spin-coating CsCO3 solution on the surface of CIGS at room temperature, followed by vacuum annealing at 400°C. The surface chemistry of the CIGS thin film changed after the treatment and the efficiency of respective solar cells improved by more than 30%, mostly driven by an enhancement in open-circuit voltage. X-ray photoelectron spectroscopy revealed the depletion of copper and the presence of Cs on the surface of the CIGS thin film. Ultraviolet photoelectron spectroscopy showed the lowering of the valence band maximum by around 0.25 eV after the treatment, which plays a positive role in reducing interfacial recombination. High-resolution transmission electron microscopy indicates the presence of Cs and depletion of Cu at the grain boundaries of the CIGS thin film. These findings open a low-cost route for improving the performance of CIGS solar cells by surface modification using a solution process.

Abstract Image

Abstract Image

溶液加工碳酸铯对 Cu(In,Ga)Se2 薄膜太阳能电池的影响
重金属碱处理是提高铜铟镓硒(CIGS)太阳能电池效率的最新突破。碱卤化物通常通过真空工艺蒸发到 CIGS 薄膜表面。在此,我们报告了使用碳酸铯(CsCO3)对 CIGS 薄膜进行表面处理的另一种低成本溶液工艺,这是一种掺入铯(Cs)以提高太阳能电池性能的新途径。CIGS 薄膜采用脉冲混合反应磁控溅射法制造,表面处理方法是在室温下将 CsCO3 溶液旋涂在 CIGS 表面,然后在 400°C 下真空退火。处理后,CIGS 薄膜的表面化学性质发生了变化,相应太阳能电池的效率提高了 30% 以上,主要原因是开路电压的提高。X 射线光电子能谱显示,CIGS 薄膜表面出现了铜的耗竭和铯的存在。紫外线光电子能谱显示,处理后价带最大值降低了约 0.25 eV,这对减少界面重组起到了积极作用。高分辨率透射电子显微镜显示,在 CIGS 薄膜的晶界处存在 Cs 和 Cu 贫化现象。这些发现为利用溶液工艺通过表面改性提高 CIGS 太阳能电池的性能开辟了一条低成本途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信