Dirk Hauschild, Frank Meyer, Andreas Benkert, Thomas Dalibor, Monika Blum, Wanli Yang, Friedrich Reinert, Clemens Heske, Lothar Weinhardt
{"title":"Chemical and Electronic Structure of the i-ZnO/InxSy:Na Front Contact Interface in Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells","authors":"Dirk Hauschild, Frank Meyer, Andreas Benkert, Thomas Dalibor, Monika Blum, Wanli Yang, Friedrich Reinert, Clemens Heske, Lothar Weinhardt","doi":"10.1002/pip.3840","DOIUrl":null,"url":null,"abstract":"<p>The chemical and electronic structure of the front contact i-ZnO/In<sub>x</sub>S<sub>y</sub>:Na interface for Cu(In,Ga)(S,Se)<sub>2</sub>-based thin-film solar cells is investigated using a combination of x-ray and electron spectroscopies. Upon i-ZnO sputter deposition on the In<sub>x</sub>S<sub>y</sub>:Na buffer layer, we find an intermixed heterojunction and the formation of InO<sub>x</sub> and Na<sub>2</sub>SO<sub>4</sub>. The window layer is shown to consist of a mixture of Zn(OH)<sub>2</sub> and ZnO, with decreasing relative Zn(OH)<sub>2</sub> content for thicker window layers. Moreover, we observe diffusion of sodium to the surface of the window layer. We derive electronic surface band gaps of the i-ZnO and In<sub>x</sub>S<sub>y</sub>:Na layers of 3.86 ± 0.18 eV and 2.60 ± 0.18 eV, respectively, and find a largely flat conduction band alignment at the i-ZnO/In<sub>x</sub>S<sub>y</sub>:Na interface.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"904-911"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3840","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical and electronic structure of the front contact i-ZnO/InxSy:Na interface for Cu(In,Ga)(S,Se)2-based thin-film solar cells is investigated using a combination of x-ray and electron spectroscopies. Upon i-ZnO sputter deposition on the InxSy:Na buffer layer, we find an intermixed heterojunction and the formation of InOx and Na2SO4. The window layer is shown to consist of a mixture of Zn(OH)2 and ZnO, with decreasing relative Zn(OH)2 content for thicker window layers. Moreover, we observe diffusion of sodium to the surface of the window layer. We derive electronic surface band gaps of the i-ZnO and InxSy:Na layers of 3.86 ± 0.18 eV and 2.60 ± 0.18 eV, respectively, and find a largely flat conduction band alignment at the i-ZnO/InxSy:Na interface.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.