Ginsenoside Rg1 treats chronic heart failure by downregulating ERK1/2 protein phosphorylation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liqi Peng, Shaodong Li, Huzhi Cai, Xueliang Chen, Yanping Tang
{"title":"Ginsenoside Rg1 treats chronic heart failure by downregulating ERK1/2 protein phosphorylation","authors":"Liqi Peng, Shaodong Li, Huzhi Cai, Xueliang Chen, Yanping Tang","doi":"10.1007/s11626-024-00960-w","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00960-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.

Abstract Image

人参皂苷 Rg1 通过下调 ERK1/2 蛋白磷酸化治疗慢性心力衰竭
本研究探讨了人参皂苷 Rg1(GRg1)对慢性心力衰竭(CHF)的潜在治疗机制,重点是其对 ERK1/2 蛋白磷酸化的调节作用。利用离体心肌细胞模型和阿霉素(ADR)诱导的体内CHF大鼠模型,将H9c2心肌细胞和SD大鼠分为对照组、CHF(ADR)组和CHF+人参皂苷Rg1组。通过测量细胞活力、增殖、凋亡和相关蛋白的表达来评估 GRg1 的作用。结果显示,与CHF(ADR)组相比,GRg1能提高细胞活性和增殖,同时显著降低炎症因子和凋亡因子的水平。此外,与 CHF(ADR)组相比,CHF+人参皂苷 Rg1 组的 Bcl-2 mRNA 和蛋白表达水平更高,Caspase3 和 Bax mRNA 和蛋白表达水平更低。值得注意的是,CHF+金森甙 Rg1 组的血清 NT-proBNP 水平和心脏重量/体重(HW/BW)指数均有所下降。此外,CHF+人参皂苷 Rg1 组大鼠的心电图与对照组相似。总之,我们的研究结果表明,GRg1通过抑制ERK1/2蛋白磷酸化,从而抑制细胞凋亡,增强细胞活性和增殖,减轻心脏炎症反应,从而缓解CHF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信