Investigation on residual stress, microstructure, and properties of the electron beam welded Haynes 230-based thin-walled piece

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Jian Xu, Yang Guo, Hailong Cheng, Guijun Mao, Shaolin Zhao, Xin Wu
{"title":"Investigation on residual stress, microstructure, and properties of the electron beam welded Haynes 230-based thin-walled piece","authors":"Jian Xu, Yang Guo, Hailong Cheng, Guijun Mao, Shaolin Zhao, Xin Wu","doi":"10.1007/s40194-024-01832-3","DOIUrl":null,"url":null,"abstract":"<p>Haynes 230 material is an important high-temperature alloy used in many significant applications. Electron beam welding (EBW) process is necessary for Haynes 230 to realize some complex structures. In this study, by combining three-dimensional finite element simulation with different experimental methods, the thermal behavior, residual stress, microstructure, and mechanical properties of Haynes 230 thin-walled weldment made by EBW were comprehensively investigated. The EBW process would induce an uneven temperature distribution in the weldment, which then results in a large amount of tensile residual stress. Sufficient amount of precipitates was generated to provide enough enhancement for the strength. The quality of the weldment was good to provide comparable strength to the base metal. This study could offer important information for the application of EBW welded Haynes 230 material, especially in the thin-walled workpieces that are used in hot-end components of combustion gas turbines.</p>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40194-024-01832-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Haynes 230 material is an important high-temperature alloy used in many significant applications. Electron beam welding (EBW) process is necessary for Haynes 230 to realize some complex structures. In this study, by combining three-dimensional finite element simulation with different experimental methods, the thermal behavior, residual stress, microstructure, and mechanical properties of Haynes 230 thin-walled weldment made by EBW were comprehensively investigated. The EBW process would induce an uneven temperature distribution in the weldment, which then results in a large amount of tensile residual stress. Sufficient amount of precipitates was generated to provide enough enhancement for the strength. The quality of the weldment was good to provide comparable strength to the base metal. This study could offer important information for the application of EBW welded Haynes 230 material, especially in the thin-walled workpieces that are used in hot-end components of combustion gas turbines.

Abstract Image

电子束焊接海恩斯 230 型薄壁件的残余应力、微观结构和性能研究
Haynes 230 材料是一种重要的高温合金,被广泛应用于许多重要领域。电子束焊接(EBW)工艺是实现某些复杂结构所必需的。本研究结合三维有限元模拟和不同的实验方法,全面研究了 EBW 工艺制成的 Haynes 230 薄壁焊件的热行为、残余应力、微观结构和力学性能。EBW 工艺会导致焊件温度分布不均,进而产生大量拉伸残余应力。产生的足够数量的析出物足以提高强度。焊接件的质量良好,可提供与母材相当的强度。这项研究为 EBW 焊接 Haynes 230 材料的应用提供了重要信息,尤其是在燃烧式燃气轮机热端部件中使用的薄壁工件方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信