{"title":"CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks","authors":"Isa Ebtehaj, Hossein Bonakdari","doi":"10.3390/atmos15091082","DOIUrl":null,"url":null,"abstract":"Accurate precipitation intensity forecasting is crucial for effective flood management and early warning systems. This study evaluates the performances of convolutional neural network (CNN) and long short-term memory (LSTM) models in predicting hourly precipitation intensity using data from Sainte Catherine de la Jacques Cartier station near Québec City. The models predict precipitation levels from one to six hours ahead, which are categorized into slight, moderate, heavy, and very heavy precipitation intensities. Our methodology involved gathering hourly precipitation data, defining input combinations for multistep ahead forecasting, and employing CNN and LSTM models. The performances of these models were assessed through qualitative and quantitative evaluations. The key findings reveal that the LSTM model excelled in the short-term (1HA to 2HA) and long-term (3HA to 6HA) forecasting, with higher R2 (up to 0.999) and NSE values (up to 0.999), while the CNN model was more computationally efficient, with lower AICc values (e.g., −16,041.1 for 1HA). The error analysis shows that the CNN demonstrated higher precision in the heavy and very heavy categories, with a lower relative error, whereas the LSTM performed better for the slight and moderate categories. The LSTM outperformed the CNN in minor- and high-intensity events, but the CNN exhibited a better performance for significant precipitation events with shorter lead times. Overall, both models were adequate, with the LSTM providing better accuracy for extended forecasts and the CNN offering efficiency for immediate predictions, highlighting their complementary roles in enhancing early warning systems and flood management strategies.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091082","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate precipitation intensity forecasting is crucial for effective flood management and early warning systems. This study evaluates the performances of convolutional neural network (CNN) and long short-term memory (LSTM) models in predicting hourly precipitation intensity using data from Sainte Catherine de la Jacques Cartier station near Québec City. The models predict precipitation levels from one to six hours ahead, which are categorized into slight, moderate, heavy, and very heavy precipitation intensities. Our methodology involved gathering hourly precipitation data, defining input combinations for multistep ahead forecasting, and employing CNN and LSTM models. The performances of these models were assessed through qualitative and quantitative evaluations. The key findings reveal that the LSTM model excelled in the short-term (1HA to 2HA) and long-term (3HA to 6HA) forecasting, with higher R2 (up to 0.999) and NSE values (up to 0.999), while the CNN model was more computationally efficient, with lower AICc values (e.g., −16,041.1 for 1HA). The error analysis shows that the CNN demonstrated higher precision in the heavy and very heavy categories, with a lower relative error, whereas the LSTM performed better for the slight and moderate categories. The LSTM outperformed the CNN in minor- and high-intensity events, but the CNN exhibited a better performance for significant precipitation events with shorter lead times. Overall, both models were adequate, with the LSTM providing better accuracy for extended forecasts and the CNN offering efficiency for immediate predictions, highlighting their complementary roles in enhancing early warning systems and flood management strategies.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.