{"title":"Biosynthesis of Arabinoside from Sucrose and Nucleobase via a Novel Multi-Enzymatic Cascade","authors":"Yuxue Liu, Erchu Yang, Xiaojing Zhang, Xiaobei Liu, Xiaoting Tang, Zhenyu Wang, Hailei Wang","doi":"10.3390/biom14091107","DOIUrl":null,"url":null,"abstract":"Arabinoside and derived nucleoside analogs, a family of nucleoside analogs, exhibit diverse typically biological activities and are widely used as antibacterial, antiviral, anti-inflammatory, antitumor, and other drugs in clinical and preclinical trials. Although with a long and rich history in the field of medicinal chemistry, the biosynthesis of arabinoside has only been sporadically designed and studied, and it remains a challenge. Here, we constructed an in vitro multi-enzymatic cascade for the biosynthesis of arabinosides. This artificial biosystem was systematically optimized, involving an exquisite pathway design, NADP+ regeneration, meticulous enzyme selection, optimization of the key enzyme dosage, and the concentration of inorganic phosphate. Under the optimized conditions, we achieved 0.37 mM of vidarabine from 5 mM of sucrose and 2 mM of adenine, representing 18.7% of the theoretical yield. Furthermore, this biosystem also has the capability to produce other arabinosides, such as spongouridine, arabinofuranosylguanine, hypoxanthine arabinofuranoside, fludarabine, and 2-methoxyadenine arabinofuranoside, from sucrose, and corresponding nucleobase by introducing different nucleoside phosphorylases. Overall, our biosynthesis approach provides a pathway for the biosynthesis of arabinose-derived nucleoside analogs, offering potential applications in the pharmaceutical industry.","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14091107","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arabinoside and derived nucleoside analogs, a family of nucleoside analogs, exhibit diverse typically biological activities and are widely used as antibacterial, antiviral, anti-inflammatory, antitumor, and other drugs in clinical and preclinical trials. Although with a long and rich history in the field of medicinal chemistry, the biosynthesis of arabinoside has only been sporadically designed and studied, and it remains a challenge. Here, we constructed an in vitro multi-enzymatic cascade for the biosynthesis of arabinosides. This artificial biosystem was systematically optimized, involving an exquisite pathway design, NADP+ regeneration, meticulous enzyme selection, optimization of the key enzyme dosage, and the concentration of inorganic phosphate. Under the optimized conditions, we achieved 0.37 mM of vidarabine from 5 mM of sucrose and 2 mM of adenine, representing 18.7% of the theoretical yield. Furthermore, this biosystem also has the capability to produce other arabinosides, such as spongouridine, arabinofuranosylguanine, hypoxanthine arabinofuranoside, fludarabine, and 2-methoxyadenine arabinofuranoside, from sucrose, and corresponding nucleobase by introducing different nucleoside phosphorylases. Overall, our biosynthesis approach provides a pathway for the biosynthesis of arabinose-derived nucleoside analogs, offering potential applications in the pharmaceutical industry.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.