Felipe M. Almeida, Sara A. L. Andrade, Fernando C. B. Zambrosi
{"title":"Post-Flowering Phosphorus Deficiency Negatively Impacts Biological Fixation but not Nitrogen Utilization Efficiency of Soybean","authors":"Felipe M. Almeida, Sara A. L. Andrade, Fernando C. B. Zambrosi","doi":"10.1007/s42729-024-01975-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding how phosphorus (P) deficiency during the reproductive phase of soybean [<i>Glycine max</i> (L.) Merril] affects nitrogen (N) acquisition via biological N fixation (BNF), and seed yield per unit of the accumulated nutrient remains incomplete. Soybean plants were fertigated with a sufficient concentration of P in the nutrient solution (500 µmol L<sup>-1</sup> P) until flowering. Subsequently, plants were maintained under this condition or subjected to nutrient deficiencies (20 or 100 µmol L<sup>-1</sup> P), resulting in three regimes of P supply during the reproductive phase. At the onset of maximum grain-filling rate and physiological harvest, various parameters were assessed, including nodulation traits, plant nutritional status and biomass production, accumulation, partitioning, and utilization efficiency of P and N. P deficiency after flowering negatively impacted soybean yield and dry mass production, as well as the concentration of P and N in plant organs, their total shoot content, and partitioning to grains. The poor BNF performance was associated with a reduction in the number and dry mass of nodules, triggered by a decrease in plant’s N demand. Nevertheless, low-P stress did not affect seed yield per unit of acquired nutrient, which was related to the fact that the decline in N partitioning to grains was accompanied by a proportional decreasing in their N concentration. The down-regulation of BNF, rather than an impaired N utilization efficiency, contributes to explaining reduced yield of soybean plants facing post-flowering P deficiency. Therefore, the development of precise P fertilization management approaches to maximize BNF and crop yield should prioritize strategies that ensure adequate P supply across the reproductive phase of soybean.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01975-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how phosphorus (P) deficiency during the reproductive phase of soybean [Glycine max (L.) Merril] affects nitrogen (N) acquisition via biological N fixation (BNF), and seed yield per unit of the accumulated nutrient remains incomplete. Soybean plants were fertigated with a sufficient concentration of P in the nutrient solution (500 µmol L-1 P) until flowering. Subsequently, plants were maintained under this condition or subjected to nutrient deficiencies (20 or 100 µmol L-1 P), resulting in three regimes of P supply during the reproductive phase. At the onset of maximum grain-filling rate and physiological harvest, various parameters were assessed, including nodulation traits, plant nutritional status and biomass production, accumulation, partitioning, and utilization efficiency of P and N. P deficiency after flowering negatively impacted soybean yield and dry mass production, as well as the concentration of P and N in plant organs, their total shoot content, and partitioning to grains. The poor BNF performance was associated with a reduction in the number and dry mass of nodules, triggered by a decrease in plant’s N demand. Nevertheless, low-P stress did not affect seed yield per unit of acquired nutrient, which was related to the fact that the decline in N partitioning to grains was accompanied by a proportional decreasing in their N concentration. The down-regulation of BNF, rather than an impaired N utilization efficiency, contributes to explaining reduced yield of soybean plants facing post-flowering P deficiency. Therefore, the development of precise P fertilization management approaches to maximize BNF and crop yield should prioritize strategies that ensure adequate P supply across the reproductive phase of soybean.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.