Arinal Haq Izzawati Nurrahma, Wiwiek Harsonowati, Hana Haruna Putri, Rashid Iqbal
{"title":"Current Research Trends in Endophytic Fungi Modulating Plant Adaptation to Climate Change-associated Soil Salinity Stress","authors":"Arinal Haq Izzawati Nurrahma, Wiwiek Harsonowati, Hana Haruna Putri, Rashid Iqbal","doi":"10.1007/s42729-024-01980-x","DOIUrl":null,"url":null,"abstract":"<p>Climate change has significantly led to the intensification of its associated stresses such as salinity, drought, and extreme temperature in agriculture, threatening global food security and safety. In this review, we performed a bibliometric analysis to provide information on the research trends in abiotic stress. The results show that salinity has been revealed to be the most alarming stress in recent years. Salinity or salt stress, is the primary abiotic stressor that significantly impacts plant development, yield, and productivity, particularly in arid and semi-arid regions worldwide. This stress causes a significant loss of crop productivity by disrupting water and nutrient uptake. Plant symbionts, particularly fungal endophytes play a key role in mitigating salinity stress in crop plants. Endophytic fungi, particularly <i>Piriformospora indica</i>, and several species of dark septate endophyte (DSE) living symbiotically within plant tissues, are revealed as sustainable and promising tools to mitigate the destructive impacts of salinity stress. Their interaction with the host plants induces the production of osmolytes and antioxidative enzymes, modulates plants to manage osmotic stress, and prevents the accumulation of harmful reactive oxygen species (ROS). Despite these advancements, understanding the specific mechanisms of how these fungi enhance salinity tolerance in host plants remains a research gap. This review synthesizes existing literature, identifies research gaps, and proposes future research directions. It provides a comprehensive overview of the role of endophytic fungi in ameliorating salinity stress, optimizing agricultural practices, and developing sustainable solutions in the context of climate change.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01980-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has significantly led to the intensification of its associated stresses such as salinity, drought, and extreme temperature in agriculture, threatening global food security and safety. In this review, we performed a bibliometric analysis to provide information on the research trends in abiotic stress. The results show that salinity has been revealed to be the most alarming stress in recent years. Salinity or salt stress, is the primary abiotic stressor that significantly impacts plant development, yield, and productivity, particularly in arid and semi-arid regions worldwide. This stress causes a significant loss of crop productivity by disrupting water and nutrient uptake. Plant symbionts, particularly fungal endophytes play a key role in mitigating salinity stress in crop plants. Endophytic fungi, particularly Piriformospora indica, and several species of dark septate endophyte (DSE) living symbiotically within plant tissues, are revealed as sustainable and promising tools to mitigate the destructive impacts of salinity stress. Their interaction with the host plants induces the production of osmolytes and antioxidative enzymes, modulates plants to manage osmotic stress, and prevents the accumulation of harmful reactive oxygen species (ROS). Despite these advancements, understanding the specific mechanisms of how these fungi enhance salinity tolerance in host plants remains a research gap. This review synthesizes existing literature, identifies research gaps, and proposes future research directions. It provides a comprehensive overview of the role of endophytic fungi in ameliorating salinity stress, optimizing agricultural practices, and developing sustainable solutions in the context of climate change.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.