Shuaishuai Lu, Nianqing Zhou, Yi Cai, Mengshen Guo, Dong Sheng, Ying Liu
{"title":"Ecological Stoichiometry of Carbon, Nitrogen and Phosphorus in Deep Sediments within the Critical Zone of South Dongting Lake Wetland, China","authors":"Shuaishuai Lu, Nianqing Zhou, Yi Cai, Mengshen Guo, Dong Sheng, Ying Liu","doi":"10.1007/s42729-024-01976-7","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the ecological stoichiometric characteristics and driving factors of carbon (C), nitrogen (N), and phosphorus (P) in deep sediments within the critical zone of South Dongting Lake Wetland. Correlation analysis, partial least squares structural equation modeling (PLS-SEM), and gradient boosted decision tree (GBDT) algorithm were employed for this investigation. The results showed that the mean values of the total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents in sediments are 9.0, 7.3, 0.9, and 0.5 g kg<sup>− 1</sup>, respectively. Sediment C, N, and P contents tended to decrease with increasing burial depth (H). The mean ratios of C/N, C/P, and N/P in sediments were 10.5, 46.5, and 5.1, respectively, notably lower than the averages in wetland soils across China. Lower C/N and C/P ratios indicate that the decomposition rate of organic matter is relatively fast and organic P is prone to mineralization in sediments. Additionally, the lower N/P ratio implies N limitation within the sediments. The TC, SOC, TN, and TP exhibited significant negative correlations with both H and redox potential (Eh), while showing positive associations with water content (W). Moreover, these factors influence ecological stoichiometric ratios (ESR) by directly affecting C, N, and P contents in sediments. The GBDT modelling revealed that TN primarily influenced C/N ratios, while TP predominantly controlled C/P and N/P ratios. The contents of C, N, and P, as well as their ESR in deep sediments of wetland are mainly controlled by H, Eh, and W.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"30 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01976-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the ecological stoichiometric characteristics and driving factors of carbon (C), nitrogen (N), and phosphorus (P) in deep sediments within the critical zone of South Dongting Lake Wetland. Correlation analysis, partial least squares structural equation modeling (PLS-SEM), and gradient boosted decision tree (GBDT) algorithm were employed for this investigation. The results showed that the mean values of the total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents in sediments are 9.0, 7.3, 0.9, and 0.5 g kg− 1, respectively. Sediment C, N, and P contents tended to decrease with increasing burial depth (H). The mean ratios of C/N, C/P, and N/P in sediments were 10.5, 46.5, and 5.1, respectively, notably lower than the averages in wetland soils across China. Lower C/N and C/P ratios indicate that the decomposition rate of organic matter is relatively fast and organic P is prone to mineralization in sediments. Additionally, the lower N/P ratio implies N limitation within the sediments. The TC, SOC, TN, and TP exhibited significant negative correlations with both H and redox potential (Eh), while showing positive associations with water content (W). Moreover, these factors influence ecological stoichiometric ratios (ESR) by directly affecting C, N, and P contents in sediments. The GBDT modelling revealed that TN primarily influenced C/N ratios, while TP predominantly controlled C/P and N/P ratios. The contents of C, N, and P, as well as their ESR in deep sediments of wetland are mainly controlled by H, Eh, and W.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.