Evangelia Sarandi, Sabine Krueger-Krasagakis, Dimitris Tsoukalas, George Evangelou, Maria Sifaki, Michael Kyriakakis, Efstathia Paramera, Evangelos Papakonstantinou, Gottfried Rudofsky, Aristides Tsatsakis
{"title":"Novel Fatty Acid Biomarkers in Psoriasis and the Role of Modifiable Factors: Results from the METHAP Clinical Study","authors":"Evangelia Sarandi, Sabine Krueger-Krasagakis, Dimitris Tsoukalas, George Evangelou, Maria Sifaki, Michael Kyriakakis, Efstathia Paramera, Evangelos Papakonstantinou, Gottfried Rudofsky, Aristides Tsatsakis","doi":"10.3390/biom14091114","DOIUrl":null,"url":null,"abstract":"Psoriasis is a chronic, immune-mediated skin condition with significant metabolic complications. Although lipid metabolism is linked to its pathogenesis, reliable biomarkers and the impact of modifiable factors remain underexplored. The aim of the present study was to identify potential biomarkers, study the affected metabolic networks, and assess the role of dietary and lifestyle factors in psoriasis. Plasma samples from 56 patients with psoriasis and 49 healthy controls were analyzed, as part of the Metabolic Biomarkers in Hashimoto’s Thyroiditis and Psoriasis (METHAP) clinical trial. Using Gas Chromatography-Mass Spectrometry 23 fatty acids and their ratios were quantified, revealing significant changes in psoriasis. Specifically, lower levels of α-linoleic acid (C18:3n3), linoleic acid (C18:2n6), and gamma-linolenic acid (C18:3n6) were observed along with higher levels of eicosatrienoic acid (C20:3n3), eicosapentaenoic acid (C20:5n3), and erucic acid (C22:1n9). Total polyunsaturated fatty acids (PUFA) were significantly decreased, and the ratio of saturated to total fatty acids (SFA/Total) was increased in psoriasis (p-values < 0.0001). Linear regression identified α-linoleic acid, linoleic acid, eicosatrienoic acid, and eicosapentaenoic acid as potential biomarkers for psoriasis, adjusting for demographic, dietary, and lifestyle confounders. Network analysis revealed key contributors in the metabolic reprogramming of psoriasis. These findings highlight the association between psoriasis and fatty acid biomarkers of inflammation, insulin resistance and micronutrients deficiency, suggesting their potency in disease management.","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14091114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Psoriasis is a chronic, immune-mediated skin condition with significant metabolic complications. Although lipid metabolism is linked to its pathogenesis, reliable biomarkers and the impact of modifiable factors remain underexplored. The aim of the present study was to identify potential biomarkers, study the affected metabolic networks, and assess the role of dietary and lifestyle factors in psoriasis. Plasma samples from 56 patients with psoriasis and 49 healthy controls were analyzed, as part of the Metabolic Biomarkers in Hashimoto’s Thyroiditis and Psoriasis (METHAP) clinical trial. Using Gas Chromatography-Mass Spectrometry 23 fatty acids and their ratios were quantified, revealing significant changes in psoriasis. Specifically, lower levels of α-linoleic acid (C18:3n3), linoleic acid (C18:2n6), and gamma-linolenic acid (C18:3n6) were observed along with higher levels of eicosatrienoic acid (C20:3n3), eicosapentaenoic acid (C20:5n3), and erucic acid (C22:1n9). Total polyunsaturated fatty acids (PUFA) were significantly decreased, and the ratio of saturated to total fatty acids (SFA/Total) was increased in psoriasis (p-values < 0.0001). Linear regression identified α-linoleic acid, linoleic acid, eicosatrienoic acid, and eicosapentaenoic acid as potential biomarkers for psoriasis, adjusting for demographic, dietary, and lifestyle confounders. Network analysis revealed key contributors in the metabolic reprogramming of psoriasis. These findings highlight the association between psoriasis and fatty acid biomarkers of inflammation, insulin resistance and micronutrients deficiency, suggesting their potency in disease management.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.