Molecular Simulation Insights into Chemical-Grafted EPDM for Improving Charge Traps, Moisture Resistance, and Pyrolysis Tolerance

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingze Gao, Zhongyuan Li, Weifeng Sun
{"title":"Molecular Simulation Insights into Chemical-Grafted EPDM for Improving Charge Traps, Moisture Resistance, and Pyrolysis Tolerance","authors":"Mingze Gao, Zhongyuan Li, Weifeng Sun","doi":"10.1149/2162-8777/ad6c7e","DOIUrl":null,"url":null,"abstract":"This study explores and verifies the chemical modifications achieved by grafting 4-formylcyclohexyl heptanoate (FH) and 4-(2,5-dioxopyrrolidin-1-yl) cyclohexane-1-carbaldehyde (CC) onto ethylene propylene diene monomer (EPDM) elastomer, a prevalent dielectric material used for reinforced insulation in cable accessories. Employing a rigorous theoretical methodology combining first-principles calculations, molecular dynamics, and Monte Carlo molecular simulations, we elucidate the intricate effects of these chemical-graft modifications on the polymeric structure of EPDM to resist charge transport, moisture-aging, and thermal impact of partial discharge. Our investigation uncovers the emergence of both shallow and deep charge traps within the material, effectively mitigating electron avalanche breakdown. Additionally, we scrutinize the influence of two proposed organic species, acting as grafting agents, on several crucial properties of EPDM including water adsorption uptake, heat capacity, molecular thermal vibration, and polymer pyrolysis. These modifications substantially bolster EPDM’s resistance to high-temperature electrical breakdown and water thermodynamic adsorption, while also enhancing its thermal stability, rendering the proposed chemical-graft modifications an effective way and underling mechanisms for ameliorating electrical insulation performances of EPDM elastomer. Our findings highlight the significant potential of graft modification in molecular structures through comprehensive molecular simulations, offering valuable insights for advancing competent elastomeric polymers in cable accessory insulation.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"161 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad6c7e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores and verifies the chemical modifications achieved by grafting 4-formylcyclohexyl heptanoate (FH) and 4-(2,5-dioxopyrrolidin-1-yl) cyclohexane-1-carbaldehyde (CC) onto ethylene propylene diene monomer (EPDM) elastomer, a prevalent dielectric material used for reinforced insulation in cable accessories. Employing a rigorous theoretical methodology combining first-principles calculations, molecular dynamics, and Monte Carlo molecular simulations, we elucidate the intricate effects of these chemical-graft modifications on the polymeric structure of EPDM to resist charge transport, moisture-aging, and thermal impact of partial discharge. Our investigation uncovers the emergence of both shallow and deep charge traps within the material, effectively mitigating electron avalanche breakdown. Additionally, we scrutinize the influence of two proposed organic species, acting as grafting agents, on several crucial properties of EPDM including water adsorption uptake, heat capacity, molecular thermal vibration, and polymer pyrolysis. These modifications substantially bolster EPDM’s resistance to high-temperature electrical breakdown and water thermodynamic adsorption, while also enhancing its thermal stability, rendering the proposed chemical-graft modifications an effective way and underling mechanisms for ameliorating electrical insulation performances of EPDM elastomer. Our findings highlight the significant potential of graft modification in molecular structures through comprehensive molecular simulations, offering valuable insights for advancing competent elastomeric polymers in cable accessory insulation.
化学接枝三元乙丙橡胶改善电荷捕获、防潮性和耐热解性的分子模拟见解
本研究探讨并验证了通过将 4-甲酰基环己基庚酸酯(FH)和 4-(2,5-二氧代吡咯烷-1-基)环己烷-1-甲醛(CC)接枝到乙丙橡胶(EPDM)弹性体上所实现的化学改性,乙丙橡胶是一种常用的介电材料,可用于电缆附件的增强绝缘。我们采用第一性原理计算、分子动力学和蒙特卡洛分子模拟相结合的严谨理论方法,阐明了这些化学接枝改性对三元乙丙橡胶聚合物结构的复杂影响,以抵抗电荷传输、湿气老化和局部放电的热影响。我们的研究揭示了材料内部浅层和深层电荷陷阱的出现,从而有效缓解了电子雪崩击穿。此外,我们还仔细研究了作为接枝剂的两种有机物对三元乙丙橡胶若干关键特性的影响,包括吸水性、热容量、分子热振动和聚合物热分解。这些改性大大增强了三元乙丙橡胶的耐高温电击穿性和水热力学吸附性,同时还提高了其热稳定性,使拟议的化学接枝改性成为改善三元乙丙橡胶电气绝缘性能的有效方法和基本机制。通过全面的分子模拟,我们的研究结果凸显了接枝改性在分子结构中的巨大潜力,为提高弹性聚合物在电缆附件绝缘中的性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信