Victor-Tapio Rangel-Kuoppa, Dante Rodrigo Alfaro-Flores, Angel Guillen-Cervantes, Francisco de Moure-Flores, Miguel Ángel Meléndez-Lira
{"title":"Towards ZnO-Based Near-Infra-Red Radiation Detectors: Performance Improvement via Si Nanoclusters Embedment","authors":"Victor-Tapio Rangel-Kuoppa, Dante Rodrigo Alfaro-Flores, Angel Guillen-Cervantes, Francisco de Moure-Flores, Miguel Ángel Meléndez-Lira","doi":"10.1149/2162-8777/ad7403","DOIUrl":null,"url":null,"abstract":"Si nanoparticles embedded in a ZnO matrix were produced by a sequential deposition of ZnO/Si/ZnO layers, by radio frequency sputtering. Sample growth temperatures of 25 °C, 300 °C, and 500 °C were used to deposit ZnO/Si/ZnO layers on soda lime glass and p-type silicon substrates; ZnO layers were deposited by reactive radio-frequency sputtering employing a mixture of Ar/O<sub>2,</sub> with a ratio of 66/33, as working atmosphere. The type of substrate and the growth temperature affect the first ZnO layer roughness, promoting the formation of silicon nanoparticles, matrix characteristics, and as consequence, spectral response. The roughness of the initial ZnO layer is transferred to the top layer of ZnO, and it can be tailored between 65 and 370 Å, depending on the sample growth temperature. Transmission electron microscopy show that substrate temperature mainly affects the density of silicon nanoparticles rather than their size. ZnO/Si/ZnO films deposited on p-type silicon substrate were processed and photosensors were obtained, showing a selective response in the 950 to 1150 nm wavelength range, making them suitable candidates for near infrared detectors.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad7403","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Si nanoparticles embedded in a ZnO matrix were produced by a sequential deposition of ZnO/Si/ZnO layers, by radio frequency sputtering. Sample growth temperatures of 25 °C, 300 °C, and 500 °C were used to deposit ZnO/Si/ZnO layers on soda lime glass and p-type silicon substrates; ZnO layers were deposited by reactive radio-frequency sputtering employing a mixture of Ar/O2, with a ratio of 66/33, as working atmosphere. The type of substrate and the growth temperature affect the first ZnO layer roughness, promoting the formation of silicon nanoparticles, matrix characteristics, and as consequence, spectral response. The roughness of the initial ZnO layer is transferred to the top layer of ZnO, and it can be tailored between 65 and 370 Å, depending on the sample growth temperature. Transmission electron microscopy show that substrate temperature mainly affects the density of silicon nanoparticles rather than their size. ZnO/Si/ZnO films deposited on p-type silicon substrate were processed and photosensors were obtained, showing a selective response in the 950 to 1150 nm wavelength range, making them suitable candidates for near infrared detectors.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.