Francisco A. B. Azevedo, Guilherme P. C. Leão, Marcos R. O. A. Maximo
{"title":"Neural Network Design for a Curved Kicking Mechanism with Obstacle Avoidance in RoboCup Small Size League (SSL)","authors":"Francisco A. B. Azevedo, Guilherme P. C. Leão, Marcos R. O. A. Maximo","doi":"10.1007/s10846-024-02140-0","DOIUrl":null,"url":null,"abstract":"<p>At the RoboCup, a robotics soccer tournament, the Small Size League (SSL) is one of its leagues. The thought of a mechanism in this league that could perform unpredictable kicks and passes inspired study into both the physical mechanism required to do it and the algorithms needed to make the most of it.By introducing new ideas and utilizing a Deep Neural Network, this work contributes by improving a prior algorithm that aims to carry out a real-time inversion of the non-linear ordinary differential equation (ODE) that models the ball’s path in order to determine the parameters to hit a target with a curved kick mechanism (DNN). New techniques are also presented. The two suggested DNN achieved accuracy levels of more than 92% in the outcomes of simulation runs in MATLAB.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"73 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02140-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
At the RoboCup, a robotics soccer tournament, the Small Size League (SSL) is one of its leagues. The thought of a mechanism in this league that could perform unpredictable kicks and passes inspired study into both the physical mechanism required to do it and the algorithms needed to make the most of it.By introducing new ideas and utilizing a Deep Neural Network, this work contributes by improving a prior algorithm that aims to carry out a real-time inversion of the non-linear ordinary differential equation (ODE) that models the ball’s path in order to determine the parameters to hit a target with a curved kick mechanism (DNN). New techniques are also presented. The two suggested DNN achieved accuracy levels of more than 92% in the outcomes of simulation runs in MATLAB.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).