{"title":"Survey of Recent Results in Privacy-Preserving Mechanisms for Multi-Agent Systems","authors":"Magdalena Kossek, Margareta Stefanovic","doi":"10.1007/s10846-024-02161-9","DOIUrl":null,"url":null,"abstract":"<p>Privacy-preserving communication in cooperative control is essential for effective operations of various systems where sensitive information needs to be protected. This includes systems such as smart grids, traffic management systems, autonomous vehicle networks, healthcare systems, financial networks, and social networks. Recent privacy-preserving cooperative control literature is categorized and discussed in this paper. Advantages and disadvantages of differential privacy and encryption-based privacy-preserving protocols are described. The objective of this work is to examine and analyze existing research and knowledge related to the preservation of privacy in the context of cooperative control. This paper aims to identify and present a range of approaches, techniques, and methodologies that have been proposed or employed to address privacy concerns in multi-agent systems. It seeks to explore the current challenges, limitations, and gaps in the existing literature. It also aims to consolidate the findings from various studies to provide an overview of privacy-preserving cooperative control in multi-agent systems. The goal is to assist in the development of novel privacy-preserving mechanisms for cooperative control.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"35 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02161-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Privacy-preserving communication in cooperative control is essential for effective operations of various systems where sensitive information needs to be protected. This includes systems such as smart grids, traffic management systems, autonomous vehicle networks, healthcare systems, financial networks, and social networks. Recent privacy-preserving cooperative control literature is categorized and discussed in this paper. Advantages and disadvantages of differential privacy and encryption-based privacy-preserving protocols are described. The objective of this work is to examine and analyze existing research and knowledge related to the preservation of privacy in the context of cooperative control. This paper aims to identify and present a range of approaches, techniques, and methodologies that have been proposed or employed to address privacy concerns in multi-agent systems. It seeks to explore the current challenges, limitations, and gaps in the existing literature. It also aims to consolidate the findings from various studies to provide an overview of privacy-preserving cooperative control in multi-agent systems. The goal is to assist in the development of novel privacy-preserving mechanisms for cooperative control.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).