Xiaoping Dong;Mingmin Huang;Yao Ma;Chengwen Fu;Mu He;Zhimei Yang;Yun Li;Min Gong
{"title":"Mechanism and Physical Model of the Single-Event Leakage Current for SiC JBS Diodes","authors":"Xiaoping Dong;Mingmin Huang;Yao Ma;Chengwen Fu;Mu He;Zhimei Yang;Yun Li;Min Gong","doi":"10.1109/TNS.2024.3446850","DOIUrl":null,"url":null,"abstract":"The single-event leakage current (SELC) mechanism of the silicon carbide (SiC) junction barrier Schottky (JBS) diode is thoroughly investigated in this work. A comprehensive physical model to quantify the degree of SELC for the JBS diode is also proposed. From the collected experimental results, it is found that the leakage current of the SiC JBS diode increased with the increase in both the reverse bias voltage under irradiation and the total fluence. According to the results of the current response during irradiation and the emission microscope (EMMI) after irradiation, it can be inferred that the leakage current degradation of the samples originated from the accumulation of the Schottky junction’s area with a barrier reduction by the ion-induced local high temperature. Taking the degradation mechanism into account, a novel physical model is developed with the help of TCAD simulations. This model clearly highlights the relationship between the degradation (i.e., Schottky barrier height reduction and amplification of the leakage current) and the irradiation conditions (i.e., reverse bias voltage and fluence). This work provides valuable insights into the underlying origins of the SELC effect and its potential mitigation in SiC JBS diodes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643204/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The single-event leakage current (SELC) mechanism of the silicon carbide (SiC) junction barrier Schottky (JBS) diode is thoroughly investigated in this work. A comprehensive physical model to quantify the degree of SELC for the JBS diode is also proposed. From the collected experimental results, it is found that the leakage current of the SiC JBS diode increased with the increase in both the reverse bias voltage under irradiation and the total fluence. According to the results of the current response during irradiation and the emission microscope (EMMI) after irradiation, it can be inferred that the leakage current degradation of the samples originated from the accumulation of the Schottky junction’s area with a barrier reduction by the ion-induced local high temperature. Taking the degradation mechanism into account, a novel physical model is developed with the help of TCAD simulations. This model clearly highlights the relationship between the degradation (i.e., Schottky barrier height reduction and amplification of the leakage current) and the irradiation conditions (i.e., reverse bias voltage and fluence). This work provides valuable insights into the underlying origins of the SELC effect and its potential mitigation in SiC JBS diodes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.