{"title":"Raman Spectra-based Structural Classification Analysis of Flavones, Flavonols, and Isoflavones Using Machine Learning","authors":"Yangyao Peng, Li Li, Yuhang Yang, Dongjie Zhang, Deyu Bao, Xiujun Li, Xiaojia Hu, Qi Zeng, Xiao Li, Zhen Zhang, Xueli Chen","doi":"10.2174/0115734110301113240528102507","DOIUrl":null,"url":null,"abstract":"Background: Different C-3 substituted flavonoids have different biological activities and applications in food pharmacology, toxicology, and medicine. Thus, the rapid identification and classification of substitution patterns at C-3 of flavonoids can benefit the processing of flavonoid-related food and medicine. Objective: This study aimed to classify flavonoids with different C3 substituents using Raman spectroscopy, providing a feasible approach for identifying flavonoids in plants. Methods: Eighteen flavonoid samples were selected and dissolved in different solvents. The corresponding Raman spectra were collected by a portable Raman spectrograph. After preprocessing, feature reduction and machine learning were used for the accurate classification of three flavonoids based on 66 Raman spectra. Results: The signals of flavone at 1002, 1245, 1590, and 1609 cm-1 were identified as the characteristic peaks. Peaks at 1298, 1586, and 1605 cm-1 were the special features observed of flavonol. The fingerprint features of isoflavone appeared at 894, 1227, 1321, and 1620 cm-1. All combinations achieved a good classification accuracy of 85%, and the accuracy of the neural network reached 93.3%. Conclusion: The results have demonstrated machine learning to be applicable for the detection and classification of C-3 substituted flavonoids and that feature reduction can aid in the discrimination of Raman spectra variations among diverse C-3 substituted flavonoids, thereby facilitating their further application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110301113240528102507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Different C-3 substituted flavonoids have different biological activities and applications in food pharmacology, toxicology, and medicine. Thus, the rapid identification and classification of substitution patterns at C-3 of flavonoids can benefit the processing of flavonoid-related food and medicine. Objective: This study aimed to classify flavonoids with different C3 substituents using Raman spectroscopy, providing a feasible approach for identifying flavonoids in plants. Methods: Eighteen flavonoid samples were selected and dissolved in different solvents. The corresponding Raman spectra were collected by a portable Raman spectrograph. After preprocessing, feature reduction and machine learning were used for the accurate classification of three flavonoids based on 66 Raman spectra. Results: The signals of flavone at 1002, 1245, 1590, and 1609 cm-1 were identified as the characteristic peaks. Peaks at 1298, 1586, and 1605 cm-1 were the special features observed of flavonol. The fingerprint features of isoflavone appeared at 894, 1227, 1321, and 1620 cm-1. All combinations achieved a good classification accuracy of 85%, and the accuracy of the neural network reached 93.3%. Conclusion: The results have demonstrated machine learning to be applicable for the detection and classification of C-3 substituted flavonoids and that feature reduction can aid in the discrimination of Raman spectra variations among diverse C-3 substituted flavonoids, thereby facilitating their further application.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.