{"title":"Progress in the Development of Antifouling Electrochemical Biosensors","authors":"Liuxing Chen, Da Chen, Meiling Lian","doi":"10.2174/0115734110320891240823065902","DOIUrl":null,"url":null,"abstract":"Electrochemical biosensors a subclass of biosensors, consisting of a biosensing element and an electrochemical transducer, have been widely used in various fields due to their excellent performance and portable device. However, in complex actual samples, non-specific adsorption of proteins and solid particles, and adhesion of cells and bacteria will lead to problems such as reduced sensor sensitivity, prolonged response time, and expanded detection errors. Therefore, constructing antifouling sensing platforms to effectively resist the bioadhesion of non-targets is crucial for the performance of biosensors. This study first introduces the commonly used classifications of electrochemical biosensors and their main contaminants. It also provides a comprehensive overview of the construction methods and application research of electrochemical antifouling sensors using different strategies, including the construction of physical, chemical and biological modification interfaces. In addition, the research progress on antifouling and antibacterial dual-action coatings for electrochemical detection is also reviewed. Finally, the challenges and future development trends of various methods are summarized, providing clues for better practical applications of electrochemical biosensors.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110320891240823065902","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical biosensors a subclass of biosensors, consisting of a biosensing element and an electrochemical transducer, have been widely used in various fields due to their excellent performance and portable device. However, in complex actual samples, non-specific adsorption of proteins and solid particles, and adhesion of cells and bacteria will lead to problems such as reduced sensor sensitivity, prolonged response time, and expanded detection errors. Therefore, constructing antifouling sensing platforms to effectively resist the bioadhesion of non-targets is crucial for the performance of biosensors. This study first introduces the commonly used classifications of electrochemical biosensors and their main contaminants. It also provides a comprehensive overview of the construction methods and application research of electrochemical antifouling sensors using different strategies, including the construction of physical, chemical and biological modification interfaces. In addition, the research progress on antifouling and antibacterial dual-action coatings for electrochemical detection is also reviewed. Finally, the challenges and future development trends of various methods are summarized, providing clues for better practical applications of electrochemical biosensors.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.