H. Sadaghian, S. Khodadoost, A. Seifiasl, R. A. Buswell
{"title":"Preliminary Insight Into Torsion of Additively-Manufactured Polylactic Acid (PLA)-Based Polymers","authors":"H. Sadaghian, S. Khodadoost, A. Seifiasl, R. A. Buswell","doi":"10.1007/s11340-024-01105-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Polymers in practical applications often face diverse torsional loads, such as polymeric gears, couplings, scaffolds, etc. Meanwhile, additive manufacturing enables the creation of intricate geometries for specific needs and its application to fabricate various component parts has grown exponentially. Nevertheless, research on cyclic and reversed cyclic torsional loading of additively-manufactured polymers is very limited.</p><h3>Objective</h3><p>Mechanical characterization of monotonic, cyclic, and reversed cyclic torsion in polylactic acid (PLA), PLA Premium, and PLA Tough materials.</p><h3>Methods</h3><p>Specimens were 3D-printed with a 0° build orientation using an extrusion technique and two infill orientation angles (± 45° and 0°/90°). Specimens were subjected to underwent monotonic, cyclic, and reversed cyclic torsion until failure.</p><h3>Results</h3><p>Regardless of material type, ductile fracture governed the behavior under monotonic loading and brittle failure under cyclic and reversed cyclic loadings. Specimens with a ± 45° infill orientation outperformed their 0°/90° counterparts across all materials, with PLA Premium exhibiting superior performance compared to PLA and PLA Tough. Importantly, it was demonstrated that the previously-proposed multilinear idealized shear stress-shear strain curve, developed for monotonic loading of 15 different polymers, also applies to the envelope curves of cyclic and reversed cyclic loading in PLA-based polymers. Thus, it is useful as material model input for numerical simulation purposes.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 9","pages":"1443 - 1464"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01105-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01105-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Polymers in practical applications often face diverse torsional loads, such as polymeric gears, couplings, scaffolds, etc. Meanwhile, additive manufacturing enables the creation of intricate geometries for specific needs and its application to fabricate various component parts has grown exponentially. Nevertheless, research on cyclic and reversed cyclic torsional loading of additively-manufactured polymers is very limited.
Objective
Mechanical characterization of monotonic, cyclic, and reversed cyclic torsion in polylactic acid (PLA), PLA Premium, and PLA Tough materials.
Methods
Specimens were 3D-printed with a 0° build orientation using an extrusion technique and two infill orientation angles (± 45° and 0°/90°). Specimens were subjected to underwent monotonic, cyclic, and reversed cyclic torsion until failure.
Results
Regardless of material type, ductile fracture governed the behavior under monotonic loading and brittle failure under cyclic and reversed cyclic loadings. Specimens with a ± 45° infill orientation outperformed their 0°/90° counterparts across all materials, with PLA Premium exhibiting superior performance compared to PLA and PLA Tough. Importantly, it was demonstrated that the previously-proposed multilinear idealized shear stress-shear strain curve, developed for monotonic loading of 15 different polymers, also applies to the envelope curves of cyclic and reversed cyclic loading in PLA-based polymers. Thus, it is useful as material model input for numerical simulation purposes.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.