{"title":"Integrative genomics unveils basement membrane-related diagnostic markers and therapeutic targets in esophageal squamous cell carcinoma","authors":"Han Zhang, Xia Zhang, Zhenyu Huang, Hao Zhang","doi":"10.1186/s13062-024-00529-3","DOIUrl":null,"url":null,"abstract":"Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inherent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related genes (BMRGs) in diagnosing ESCC remains sparse. We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clustering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis. Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment. Our study identified seven key BMRGs (BGN, LAMB3, SPARC, MMP1, LUM, COL4A1, and NELL2) and established a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug target, indicating a novel strategy for future clinical combination therapies in ESCC.","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"29 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00529-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inherent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related genes (BMRGs) in diagnosing ESCC remains sparse. We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clustering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis. Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment. Our study identified seven key BMRGs (BGN, LAMB3, SPARC, MMP1, LUM, COL4A1, and NELL2) and established a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug target, indicating a novel strategy for future clinical combination therapies in ESCC.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.