{"title":"Synthetic access to thiols: A review","authors":"Aparna Monga, Durgesh Nandini","doi":"10.1007/s12039-024-02300-7","DOIUrl":null,"url":null,"abstract":"<div><p>Thiols are ubiquitous compounds found in almost all spheres of life, viz: from simple matter to complex human body. It has widespread applications in diverse domains such as pharmaceuticals, materials, agricultural science, fire science, laser science, catalytic systems, reagent systems, and industry. Although all sulphur compounds encompass one or the other significant properties. However, thiols containing –SH bond are vital as they act as starting substrates for many chemical reactions, are directly present in the biological systems, are abundantly found in natural products, and exhibit profound chemical and biotechnological properties. For example, the –SH group can be easily manipulated to a range of other potent functionalities such as –S–S, –SO<sub>2</sub>Cl<sub>2</sub>, –SOCH<sub>3</sub>, –SOCl<sub>2</sub>, –SONH<sub>2</sub>, –Cl, –NH<sub>2</sub>, –OH, etc. In this view, this review focuses on reporting detailed synthetic methodologies giving access to thiols (–SH). For interesting reading, it has been categorised as follows: (i) <i>via</i> isothiouronium salts; (ii) catalytic preparation of thiols using H<sub>2</sub>S; (iii) using silanethiol/disilathiane; (iv) using thiolacetic acid/thioacetates; (v) from xanthates; (vi) reaction of sodium thiocyanate; (vii) using sodium trithiocarbonates; (viii) using Lawesson’s reagent; (ix) using phosphorus decasulfide; (x) enzymatic method; and the rest of a methods are classified under miscellaneous section.</p><h3>Graphical abstract</h3><p> Synthetic methodologies to form terminal –SH bonds using various reagent systems, <i>viz</i>; (i) isothiouronium salts; (ii) catalytic preparation using H<sub>2</sub>S; (iii) silanethiol/disilathiane; (iv) thiolacetic acid/thioacetates; (v) xanthates; (vi) reaction of sodium thiocyanate; (vii) sodium trithiocarbonates; (viii) Lawesson’s reagent; (ix) phosphorus decasulfide and (x) few enzymatic methods.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02300-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thiols are ubiquitous compounds found in almost all spheres of life, viz: from simple matter to complex human body. It has widespread applications in diverse domains such as pharmaceuticals, materials, agricultural science, fire science, laser science, catalytic systems, reagent systems, and industry. Although all sulphur compounds encompass one or the other significant properties. However, thiols containing –SH bond are vital as they act as starting substrates for many chemical reactions, are directly present in the biological systems, are abundantly found in natural products, and exhibit profound chemical and biotechnological properties. For example, the –SH group can be easily manipulated to a range of other potent functionalities such as –S–S, –SO2Cl2, –SOCH3, –SOCl2, –SONH2, –Cl, –NH2, –OH, etc. In this view, this review focuses on reporting detailed synthetic methodologies giving access to thiols (–SH). For interesting reading, it has been categorised as follows: (i) via isothiouronium salts; (ii) catalytic preparation of thiols using H2S; (iii) using silanethiol/disilathiane; (iv) using thiolacetic acid/thioacetates; (v) from xanthates; (vi) reaction of sodium thiocyanate; (vii) using sodium trithiocarbonates; (viii) using Lawesson’s reagent; (ix) using phosphorus decasulfide; (x) enzymatic method; and the rest of a methods are classified under miscellaneous section.
Graphical abstract
Synthetic methodologies to form terminal –SH bonds using various reagent systems, viz; (i) isothiouronium salts; (ii) catalytic preparation using H2S; (iii) silanethiol/disilathiane; (iv) thiolacetic acid/thioacetates; (v) xanthates; (vi) reaction of sodium thiocyanate; (vii) sodium trithiocarbonates; (viii) Lawesson’s reagent; (ix) phosphorus decasulfide and (x) few enzymatic methods.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.