Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer synthesis and characterization using ring-opening polymerization, free-radical polymerization, and “click” chemistry techniques
{"title":"Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer synthesis and characterization using ring-opening polymerization, free-radical polymerization, and “click” chemistry techniques","authors":"Bedrettin Savaş, Temel Öztürk","doi":"10.1007/s12039-024-02296-0","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of poly(4-vinylbenzyl-g-<i>β</i>-butyrolactone) (poly(VB-g-BL)) graft copolymer was carried out by “click” chemistry of terminal azido poly(4-vinylbenzyl chloride) (PVB-N<sub>3</sub>) and terminal propargyl poly(<i>β</i>-butyrolactone) (<i>β</i>-BL-propargyl). For this purpose, poly(4-vinylbenzyl chloride) (poly-4-VBC) was obtained using 4-vinylbenzyl chloride and 2,2′-azobis(2-methylpropionitrile) by free-radical polymerization. PVB-N<sub>3</sub> was synthesized using sodium azide and poly-4-VBC. <i>β</i>-BL-propargyl was obtained by the reaction of <i>β</i>-butyrolactone monomer with propargyl alcohol via ring-opening polymerization. The graft copolymer was also synthesized via “click” chemistry, employing PVB-N<sub>3</sub> and <i>β</i>-BL-propargyl. The products were thoroughly characterized by GPC, FT-IR, SEM, and <sup>1</sup>H-NMR. DSC and TGA were used to track the graft copolymer’s thermal characteristics. Thermal and spectroscopic measurements verified that the reactions were effectively completed.</p><h3>Graphical abstract</h3><p>Poly(4-vinylbenzyl chloride) was obtained by free-radical polymerization. Terminal azido poly(4-vinylbenzyl chloride) was synthesized using sodium azide and poly(4-vinylbenzyl chloride). Terminal propargyl poly(β-butyrolactone) was obtained by β-butyrolactone and propargyl alcohol via ring-opening polymerization. Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer was synthesized by “click” chemistry. Thermal and spectroscopic measurements verified that the reactions were completed.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02296-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of poly(4-vinylbenzyl-g-β-butyrolactone) (poly(VB-g-BL)) graft copolymer was carried out by “click” chemistry of terminal azido poly(4-vinylbenzyl chloride) (PVB-N3) and terminal propargyl poly(β-butyrolactone) (β-BL-propargyl). For this purpose, poly(4-vinylbenzyl chloride) (poly-4-VBC) was obtained using 4-vinylbenzyl chloride and 2,2′-azobis(2-methylpropionitrile) by free-radical polymerization. PVB-N3 was synthesized using sodium azide and poly-4-VBC. β-BL-propargyl was obtained by the reaction of β-butyrolactone monomer with propargyl alcohol via ring-opening polymerization. The graft copolymer was also synthesized via “click” chemistry, employing PVB-N3 and β-BL-propargyl. The products were thoroughly characterized by GPC, FT-IR, SEM, and 1H-NMR. DSC and TGA were used to track the graft copolymer’s thermal characteristics. Thermal and spectroscopic measurements verified that the reactions were effectively completed.
Graphical abstract
Poly(4-vinylbenzyl chloride) was obtained by free-radical polymerization. Terminal azido poly(4-vinylbenzyl chloride) was synthesized using sodium azide and poly(4-vinylbenzyl chloride). Terminal propargyl poly(β-butyrolactone) was obtained by β-butyrolactone and propargyl alcohol via ring-opening polymerization. Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer was synthesized by “click” chemistry. Thermal and spectroscopic measurements verified that the reactions were completed.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.