{"title":"Network-based and sheet-based Gyroid lattice structures with different gradient directions: manufacture, mechanical response and energy absorption","authors":"Bo Hao, Zhiming Zhu, Li Zhang","doi":"10.1007/s11012-024-01874-3","DOIUrl":null,"url":null,"abstract":"<p>To investigate the effect of gradient direction on mechanical properties and energy absorption capability of Gyroid lattice structures (GLSs), network-based and sheet-based lattice structures (G1-N768, G2-N768, G1-S768, G2-S768) of different gradient directions with an average porosity of 70% were established. The Al-Si10-Mg samples were manufactured through selective laser melting (SLM). Through compression tests and finite element analysis (FEA), the energy absorption, deformation behavior, and mechanical properties of the GLSs were evaluated. The data exhibited good consistency, and the deviations of yield strength, elastic modulus, plateau stress, densification strain and energy absorption could be controlled at about 10%. The results indicated that whether it is network-based or sheet-based GLSs, by changing the gradient direction, the deformation behavior could be transformed from layer-by-layer deformation (G1-GLSs) to uniform deformation (G2-GLSs), and thus realize the regulation of mechanical properties. At the same time, due to different topological configurations, stretch-dominated sheet-based GLSs (G1-S768, G2-S768) exhibited higher energy absorption capability and mechanical properties than bending-dominated network-based GLSs (G1-N768, G2-N768), and the energy absorption, yield strength and elastic modulus increased by 93.7%, 80.8% and 66.7%, respectively. In addition, the introduction of the Johnson–Cook model has effectively simulated the failure behavior of GLSs. This paper can offer theoretical guidance for the subsequent performance regulation and application of functionally graded GLSs.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01874-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effect of gradient direction on mechanical properties and energy absorption capability of Gyroid lattice structures (GLSs), network-based and sheet-based lattice structures (G1-N768, G2-N768, G1-S768, G2-S768) of different gradient directions with an average porosity of 70% were established. The Al-Si10-Mg samples were manufactured through selective laser melting (SLM). Through compression tests and finite element analysis (FEA), the energy absorption, deformation behavior, and mechanical properties of the GLSs were evaluated. The data exhibited good consistency, and the deviations of yield strength, elastic modulus, plateau stress, densification strain and energy absorption could be controlled at about 10%. The results indicated that whether it is network-based or sheet-based GLSs, by changing the gradient direction, the deformation behavior could be transformed from layer-by-layer deformation (G1-GLSs) to uniform deformation (G2-GLSs), and thus realize the regulation of mechanical properties. At the same time, due to different topological configurations, stretch-dominated sheet-based GLSs (G1-S768, G2-S768) exhibited higher energy absorption capability and mechanical properties than bending-dominated network-based GLSs (G1-N768, G2-N768), and the energy absorption, yield strength and elastic modulus increased by 93.7%, 80.8% and 66.7%, respectively. In addition, the introduction of the Johnson–Cook model has effectively simulated the failure behavior of GLSs. This paper can offer theoretical guidance for the subsequent performance regulation and application of functionally graded GLSs.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.