Tingting Lin, Qiang Gao, Jun Zhong, Suye Yu, Guodong Liu
{"title":"Structural, Mechanical, and Thermoelectric Properties of Quaternary Heusler Compounds CuCoZrZ (Z = Sn, Pb): A First‐Principles Investigation","authors":"Tingting Lin, Qiang Gao, Jun Zhong, Suye Yu, Guodong Liu","doi":"10.1002/pssb.202400278","DOIUrl":null,"url":null,"abstract":"The structural, mechanical, and thermoelectric properties of quaternary CuCoZrZ (Z = Sn, Pb) Heusler compounds are theoretically investigated. Both compounds are mechanically and dynamically stable. The indirect semiconductor bandgaps of 0.220 eV for CuCoZrSn and 0.197 eV for CuCoZrPb are observed using the Tran and Blaha‐modified Becke–Johnson technique. The lattice thermal conductivities, calculated by the Slack approach, are 4.69 and 6.90 W mK<jats:sup>−1</jats:sup> for CuCoZrSn and CuCoZrPb at 300 K, respectively. The relationship between thermoelectric properties and carrier concentration is studied using the BoltzTrap code. Both n‐ and p‐type CuCoZrZ (Z = Sn, Pb) compounds exhibit high ZT values, making them promising thermoelectric materials.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400278","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The structural, mechanical, and thermoelectric properties of quaternary CuCoZrZ (Z = Sn, Pb) Heusler compounds are theoretically investigated. Both compounds are mechanically and dynamically stable. The indirect semiconductor bandgaps of 0.220 eV for CuCoZrSn and 0.197 eV for CuCoZrPb are observed using the Tran and Blaha‐modified Becke–Johnson technique. The lattice thermal conductivities, calculated by the Slack approach, are 4.69 and 6.90 W mK−1 for CuCoZrSn and CuCoZrPb at 300 K, respectively. The relationship between thermoelectric properties and carrier concentration is studied using the BoltzTrap code. Both n‐ and p‐type CuCoZrZ (Z = Sn, Pb) compounds exhibit high ZT values, making them promising thermoelectric materials.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.