Qiuyue Ma, Yanfeng Ge, Wenhui Wan, Guochun Yang, Yong Liu
{"title":"Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)","authors":"Qiuyue Ma, Yanfeng Ge, Wenhui Wan, Guochun Yang, Yong Liu","doi":"10.1002/pssb.202400340","DOIUrl":null,"url":null,"abstract":"Two‐dimensional (2D) Janus materials are a fascinating class of materials resulting from their unique electronic and magnetic properties induced by mirror symmetry breaking. However, 2D Janus materials with intrinsic magnetism remain rather rare, casting a mysterious veil over magnetism. In this work, the electronic and magnetic properties of Janus Mn<jats:sub>2</jats:sub>GeX (X = As, Sb) monolayers using the first‐principles calculations are investigated. The results demonstrate that these Janus materials exhibit excellent mechanical and dynamic stability, indicating their potential for future applications in nanoscale spintronic devices. Interestingly, the Janus and monolayers possess exciting half‐metallic character with wide half‐metallic gaps of 0.29 and 0.18 eV, and spin gaps of 1.68 and 1.62 eV, respectively. Their calculated ground state exhibits a strong preference for ferromagnetic ordering, with a Curie temperature () of 630 and 590 K, respectively. Additionally, the ferromagnetism of Janus Mn<jats:sub>2</jats:sub>GeX (X = As, Sb) monolayers is robust against biaxial strain ranging from −6% to 6%. Under 6% tensile strain, the calculated of the monolayer is 639 K, which represents a 9% increase compared to the observed in the unstrained condition. All these intriguing electronic and magnetic properties make the Janus Mn<jats:sub>2</jats:sub>GeX (X = As, Sb) monolayers an appealing candidate for applications in nanoscale spintronic devices.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400340","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Two‐dimensional (2D) Janus materials are a fascinating class of materials resulting from their unique electronic and magnetic properties induced by mirror symmetry breaking. However, 2D Janus materials with intrinsic magnetism remain rather rare, casting a mysterious veil over magnetism. In this work, the electronic and magnetic properties of Janus Mn2GeX (X = As, Sb) monolayers using the first‐principles calculations are investigated. The results demonstrate that these Janus materials exhibit excellent mechanical and dynamic stability, indicating their potential for future applications in nanoscale spintronic devices. Interestingly, the Janus and monolayers possess exciting half‐metallic character with wide half‐metallic gaps of 0.29 and 0.18 eV, and spin gaps of 1.68 and 1.62 eV, respectively. Their calculated ground state exhibits a strong preference for ferromagnetic ordering, with a Curie temperature () of 630 and 590 K, respectively. Additionally, the ferromagnetism of Janus Mn2GeX (X = As, Sb) monolayers is robust against biaxial strain ranging from −6% to 6%. Under 6% tensile strain, the calculated of the monolayer is 639 K, which represents a 9% increase compared to the observed in the unstrained condition. All these intriguing electronic and magnetic properties make the Janus Mn2GeX (X = As, Sb) monolayers an appealing candidate for applications in nanoscale spintronic devices.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.