Multiview deep learning networks based on automated breast volume scanner images for identifying breast cancer in BI-RADS 4

IF 3.5 3区 医学 Q2 ONCOLOGY
Yini Li, Cao Li, Tao Yang, Lingzhi Chen, Mingquan Huang, Lu Yang, Shuxian Zhou, Huaqing Liu, Jizhu Xia, Shijie Wang
{"title":"Multiview deep learning networks based on automated breast volume scanner images for identifying breast cancer in BI-RADS 4","authors":"Yini Li, Cao Li, Tao Yang, Lingzhi Chen, Mingquan Huang, Lu Yang, Shuxian Zhou, Huaqing Liu, Jizhu Xia, Shijie Wang","doi":"10.3389/fonc.2024.1399296","DOIUrl":null,"url":null,"abstract":"ObjectivesTo develop and validate a deep learning (DL) based automatic segmentation and classification system to classify benign and malignant BI-RADS 4 lesions imaged with ABVS.MethodsFrom May to December 2020, patients with BI-RADS 4 lesions from Centre 1 and Centre 2 were retrospectively enrolled and divided into a training set (Centre 1) and an independent test set (Centre 2). All included patients underwent an ABVS examination within one week before the biopsy. A two-stage DL framework consisting of an automatic segmentation module and an automatic classification module was developed. The preprocessed ABVS images were input into the segmentation module for BI-RADS 4 lesion segmentation. The classification model was constructed to extract features and output the probability of malignancy. The diagnostic performances among different ABVS views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3, ResNet 50, and MobileNet) were compared.ResultsA total of 251 BI-RADS 4 lesions from 216 patients were included (178 in the training set and 73 in the independent test set). The average Dice coefficient, precision, and recall of the segmentation module in the test set were 0.817 ± 0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on multiview ABVS images and Inception-v3 achieved the best performance, with an AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953), 82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set.ConclusionsThe developed multiview DL model enables automatic segmentation and classification of BI-RADS 4 lesions in ABVS images.","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1399296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ObjectivesTo develop and validate a deep learning (DL) based automatic segmentation and classification system to classify benign and malignant BI-RADS 4 lesions imaged with ABVS.MethodsFrom May to December 2020, patients with BI-RADS 4 lesions from Centre 1 and Centre 2 were retrospectively enrolled and divided into a training set (Centre 1) and an independent test set (Centre 2). All included patients underwent an ABVS examination within one week before the biopsy. A two-stage DL framework consisting of an automatic segmentation module and an automatic classification module was developed. The preprocessed ABVS images were input into the segmentation module for BI-RADS 4 lesion segmentation. The classification model was constructed to extract features and output the probability of malignancy. The diagnostic performances among different ABVS views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3, ResNet 50, and MobileNet) were compared.ResultsA total of 251 BI-RADS 4 lesions from 216 patients were included (178 in the training set and 73 in the independent test set). The average Dice coefficient, precision, and recall of the segmentation module in the test set were 0.817 ± 0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on multiview ABVS images and Inception-v3 achieved the best performance, with an AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953), 82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set.ConclusionsThe developed multiview DL model enables automatic segmentation and classification of BI-RADS 4 lesions in ABVS images.
基于自动乳腺容积扫描仪图像的多视角深度学习网络,用于识别 BI-RADS 4 中的乳腺癌
目的开发并验证基于深度学习(DL)的自动分割和分类系统,以对 ABVS 成像的 BI-RADS 4 病变进行良性和恶性分类。方法从 2020 年 5 月至 12 月,回顾性地纳入了来自中心 1 和中心 2 的 BI-RADS 4 病变患者,并将其分为训练集(中心 1)和独立测试集(中心 2)。所有纳入的患者都在活检前一周内接受了 ABVS 检查。我们开发了一个由自动分割模块和自动分类模块组成的两阶段 DL 框架。预处理后的 ABVS 图像被输入到分割模块,进行 BI-RADS 4 病灶分割。分类模型用于提取特征并输出恶性概率。比较了不同 ABVS 视图(轴位、矢状位、冠状位和多视图)和 DL 架构(Inception-v3、ResNet 50 和 MobileNet)的诊断性能。测试集中分割模块的平均 Dice 系数、精确度和召回率分别为 0.817 ± 0.142、0.903 ± 0.183 和 0.886 ± 0.187。基于多视图 ABVS 图像和 Inception-v3 的 DL 模型性能最佳,在测试集中的 AUC、灵敏度、特异性、PPV 和 NPV 分别为 0.949(95% CI:0.945-0.953)、82.14%、95.56%、92.00% 和 89.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Oncology
Frontiers in Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
6.20
自引率
10.60%
发文量
6641
审稿时长
14 weeks
期刊介绍: Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信