{"title":"The Effect of NMR Setting Parameters on Molecular Weight Determination of Polyether Diols","authors":"Shu-Jie Huang, Xiao-Hong Li, Ying-Feng Tu","doi":"10.1007/s10118-024-3172-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear magnetic resonance (NMR) is an advanced technique for the molecular weight (MW) determination of polymers at quantitative conditions. In this study, we investigate the effect of liquid <sup>1</sup>H-NMR instrumental setting parameters on the MW determination of polyether diols, namely poly(ethylene glycol) (PEG) and poly(tetramethylene oxide) (PTMO) diols, using hydroxymethylene groups as chain-ends. Our results show that the protons in chain-ends have larger spin-lattice relaxation time (<i>T</i><sub>1</sub>) than those in main chains. To let most of the excited protons relax to the equilibrium state, the delay time (<i>d</i><sub>1</sub>) should be much larger than <i>T</i><sub>1</sub> of end-groups. When <sup>13</sup>C decoupling is inactive, the relative errors can be greater than 60%, due to the <sup>13</sup>C-coupled proton satellite peaks, which can overlap with chain-end groups or be misassigned as chain-ends. The optimal quantitative NMR conditions for the MW estimation of polyethers are revealed below: standard pulse with inverted gated <sup>13</sup>C decoupling pulse sequence, 32 scans, 2.0 s acquisition time in 90 degree of flip angle and 30 s <i>d</i><sub>1</sub>. The MWs determined from <sup>1</sup>H quantitative NMR are all smaller than those from SEC which are relative to polystyrene (PS) standards, since the size of polyether chains is larger than that of PS with the same MW. In addition, the MW obtained from SEC for PTMOs shows larger overestimation than PEGs, suggesting PEG chains are more flexible than PTMO’s.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1730 - 1737"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3172-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear magnetic resonance (NMR) is an advanced technique for the molecular weight (MW) determination of polymers at quantitative conditions. In this study, we investigate the effect of liquid 1H-NMR instrumental setting parameters on the MW determination of polyether diols, namely poly(ethylene glycol) (PEG) and poly(tetramethylene oxide) (PTMO) diols, using hydroxymethylene groups as chain-ends. Our results show that the protons in chain-ends have larger spin-lattice relaxation time (T1) than those in main chains. To let most of the excited protons relax to the equilibrium state, the delay time (d1) should be much larger than T1 of end-groups. When 13C decoupling is inactive, the relative errors can be greater than 60%, due to the 13C-coupled proton satellite peaks, which can overlap with chain-end groups or be misassigned as chain-ends. The optimal quantitative NMR conditions for the MW estimation of polyethers are revealed below: standard pulse with inverted gated 13C decoupling pulse sequence, 32 scans, 2.0 s acquisition time in 90 degree of flip angle and 30 s d1. The MWs determined from 1H quantitative NMR are all smaller than those from SEC which are relative to polystyrene (PS) standards, since the size of polyether chains is larger than that of PS with the same MW. In addition, the MW obtained from SEC for PTMOs shows larger overestimation than PEGs, suggesting PEG chains are more flexible than PTMO’s.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.