Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shu-Juan Wang, Lu Wang, Hong-Zhe Su, Zhi-Cheng Wu, Qiao-Gen Zhang, Wei Fan, Xin-Li Jing
{"title":"Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators","authors":"Shu-Juan Wang,&nbsp;Lu Wang,&nbsp;Hong-Zhe Su,&nbsp;Zhi-Cheng Wu,&nbsp;Qiao-Gen Zhang,&nbsp;Wei Fan,&nbsp;Xin-Li Jing","doi":"10.1007/s10118-024-3178-5","DOIUrl":null,"url":null,"abstract":"<div><p>Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3178-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.

室温自愈合和可回收 PDMS 弹性体具有优异的机械性能,可用于三电纳米发电机
聚二甲基硅氧烷(PDMS)是一种电子吸收材料,被广泛用于三电纳米发电机(TENG)。然而,PDMS 固化后的机械性能较差,长期工作时容易损坏。因此,无法保证 TENG 在机械变形条件下长期稳定运行。在这项工作中,在 PDMS 弹性体中引入了多个氢键和芳香族二硫键。这些弹性体具有高韧性(拉伸强度为 1.91 兆帕,断裂伸长率为 340%)、良好的可回收性和室温自愈合特性(24 小时内愈合效率为 96.4%)。利用 PDMS 弹性体和 MXene 之间的氢键,制备出了可回收的三明治状三电纳米发电机,它具有优异的电输出性能(13.5 V)和室温自愈性能(24 小时内,自发电性能恢复 98%)。本文所报告的工作为开发高性能 TENG 负摩擦层提供了理论指导和令人信服的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信