A Strong, Tough, and Self-Healing Strengthening Thioctic Acid-based Elastomer for Highly Reliable Flexible Strain Sensor

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Xin-Yu Chen, Yu-Bing Fu, Xue-Ling Yan, Lan Liu
{"title":"A Strong, Tough, and Self-Healing Strengthening Thioctic Acid-based Elastomer for Highly Reliable Flexible Strain Sensor","authors":"Xin-Yu Chen, Yu-Bing Fu, Xue-Ling Yan, Lan Liu","doi":"10.1007/s10118-024-3210-9","DOIUrl":null,"url":null,"abstract":"<p>Elastomers with high strength and toughness, excellent self-healing properties, and biocompatibility have broad application prospects in wearable electronics and other fields, but preparing it remains a challenge. In this work, we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine (TEA) to the poly thioctic acid (PTA) chains and preparing the PA<sub><i>x</i></sub>E<sub><i>y</i></sub> elastomers using a simple synthesis step. This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks, endowing materials with excellent strength and toughness (tensile strength of 288 kPa, toughness of 278.2 kJ/m<sup>3</sup>), admirable self-healing properties (self-healing efficiency of 121.6% within 7 h at 70 °C), and good biocompatibility. The PA<sub><i>x</i></sub>E<sub><i>y</i></sub> elastomers can also be combined with MWNTs to become flexible strain sensors, which can be used to monitor human joint movements with high sensitivity, repeatable responses, and stability.</p>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10118-024-3210-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Elastomers with high strength and toughness, excellent self-healing properties, and biocompatibility have broad application prospects in wearable electronics and other fields, but preparing it remains a challenge. In this work, we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine (TEA) to the poly thioctic acid (PTA) chains and preparing the PAxEy elastomers using a simple synthesis step. This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks, endowing materials with excellent strength and toughness (tensile strength of 288 kPa, toughness of 278.2 kJ/m3), admirable self-healing properties (self-healing efficiency of 121.6% within 7 h at 70 °C), and good biocompatibility. The PAxEy elastomers can also be combined with MWNTs to become flexible strain sensors, which can be used to monitor human joint movements with high sensitivity, repeatable responses, and stability.

用于高可靠性柔性应变传感器的强韧自愈型硫辛酸基弹性体
弹性体具有高强度、高韧性、优异的自愈性能和生物相容性,在可穿戴电子设备等领域有着广阔的应用前景,但制备弹性体仍是一项挑战。在这项工作中,我们提出了一种适应性很强的策略,即在聚硫辛酸(PTA)链中引入小分子交联剂三乙醇胺(TEA),通过简单的合成步骤制备 PAxEy 弹性体。这种策略通过构建多个非共价交联动态网络来稳定 PTA 链,使材料具有出色的强度和韧性(拉伸强度为 288 kPa,韧性为 278.2 kJ/m3)、令人赞叹的自愈性能(70 °C 下 7 小时内自愈效率为 121.6%)和良好的生物相容性。PAxEy 弹性体还可与 MWNTs 结合成为柔性应变传感器,用于监测人体关节运动,具有高灵敏度、可重复响应和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信