{"title":"Flexible intracortical probes for stable neural recording: from the perspective of structure","authors":"Suhao Wang, Qianqian Jiang, Jizhou Song","doi":"10.1088/2058-8585/ad71dc","DOIUrl":null,"url":null,"abstract":"Electrical neural interfaces provide direct communication pathways between living brain tissue and engineered devices to understand brain function. However, conventional neural probes have remained limited in providing stable, long-lasting recordings because of large mechanical and structural mismatches with respect to brain tissue. The development of flexible probes provides a promising approach to tackle these challenges. In this review, various structural designs of flexible intracortical probes for promoting long-term neural integration, including thin film filament and mesh probe structures that provide similar geometric and mechanical properties to brain tissue and self-deployable probe structure that enables moving the functional sensors away from the insertion trauma, are summarized, highlighting the important role of structural design in improving the long-term recording stability of neural probes.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad71dc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical neural interfaces provide direct communication pathways between living brain tissue and engineered devices to understand brain function. However, conventional neural probes have remained limited in providing stable, long-lasting recordings because of large mechanical and structural mismatches with respect to brain tissue. The development of flexible probes provides a promising approach to tackle these challenges. In this review, various structural designs of flexible intracortical probes for promoting long-term neural integration, including thin film filament and mesh probe structures that provide similar geometric and mechanical properties to brain tissue and self-deployable probe structure that enables moving the functional sensors away from the insertion trauma, are summarized, highlighting the important role of structural design in improving the long-term recording stability of neural probes.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.