{"title":"A Study on the Impact of Chemical Structure on the Evolution of Aggregate Structure in Fiber-shaped High Density Polyethylene Vitrimer","authors":"Bing Wang, Yuan-Chu Gao, Hai Wang, Hui Niu","doi":"10.1007/s10118-024-3176-7","DOIUrl":null,"url":null,"abstract":"<div><p>Vitrimers have emerged as a prominent research area in the field of polymer materials. Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures, while the impact of chemical structure on aggregate structure of vitrimers, particularly during polymer processing, remains insufficiently investigated. The present study employed commercial maleic anhydride-grafted-high density polyethylene (M-<i>g</i>-HDPE) as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process. Through chemical structure characterization, morphology observation, thermal and mechanical properties investigation, as well as aggregate structure analysis, this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing. A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing, resulting in a lower orientation of the PE chains. However, lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation. The uneven morphology of fiber-shaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding, which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1557 - 1565"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3176-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vitrimers have emerged as a prominent research area in the field of polymer materials. Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures, while the impact of chemical structure on aggregate structure of vitrimers, particularly during polymer processing, remains insufficiently investigated. The present study employed commercial maleic anhydride-grafted-high density polyethylene (M-g-HDPE) as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process. Through chemical structure characterization, morphology observation, thermal and mechanical properties investigation, as well as aggregate structure analysis, this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing. A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing, resulting in a lower orientation of the PE chains. However, lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation. The uneven morphology of fiber-shaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding, which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.