Efficient and pH-Sensitive Nonconventional Luminescent Polymers for Cellular Imaging and Ion Detection

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiao He, Hua-Jian Song, Zuo-An Liu, Bing-Li Jiang, Yong-Yang Gong, Wang-Zhang Yuan
{"title":"Efficient and pH-Sensitive Nonconventional Luminescent Polymers for Cellular Imaging and Ion Detection","authors":"Jiao He,&nbsp;Hua-Jian Song,&nbsp;Zuo-An Liu,&nbsp;Bing-Li Jiang,&nbsp;Yong-Yang Gong,&nbsp;Wang-Zhang Yuan","doi":"10.1007/s10118-024-3161-1","DOIUrl":null,"url":null,"abstract":"<div><p>Nonconventional luminescent materials (NLMs) are a type of organic luminescent materials that does not contain aromatic units. Due to the simplicity of the synthesis process, mild reaction conditions, good hydrophilicity and biological compatibility, NLMs have attracted much attention. Nevertheless, numerous reports indicate that NLMs can only effectively luminesce at high concentrations and in solid state, which limits their applicability in the field of cell imaging. This study addresses this limitation by designing and synthesizing oligomers P1, P2 and P3 using ethylene glycol diglycidyl ether and amine compounds containing ethylene groups. These oligomers exhibit remarkable luminescence efficiency reaching as high as 9.2% in dilute solutions (0.1 mg/mL), making them among the best NLMs in this category. Furthermore, the synthesized oligomers exhibit excitation wavelength-dependent and concentration-dependent luminescence intensity, fluorescence response to temperature and pH changes, as well as the ability to identify Fe<sup>3+</sup>, Cu<sup>2+</sup> and Mo<sup>5+</sup> in dilute solutions. These characteristics render them potentially useful in the for cell imaging.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3161-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonconventional luminescent materials (NLMs) are a type of organic luminescent materials that does not contain aromatic units. Due to the simplicity of the synthesis process, mild reaction conditions, good hydrophilicity and biological compatibility, NLMs have attracted much attention. Nevertheless, numerous reports indicate that NLMs can only effectively luminesce at high concentrations and in solid state, which limits their applicability in the field of cell imaging. This study addresses this limitation by designing and synthesizing oligomers P1, P2 and P3 using ethylene glycol diglycidyl ether and amine compounds containing ethylene groups. These oligomers exhibit remarkable luminescence efficiency reaching as high as 9.2% in dilute solutions (0.1 mg/mL), making them among the best NLMs in this category. Furthermore, the synthesized oligomers exhibit excitation wavelength-dependent and concentration-dependent luminescence intensity, fluorescence response to temperature and pH changes, as well as the ability to identify Fe3+, Cu2+ and Mo5+ in dilute solutions. These characteristics render them potentially useful in the for cell imaging.

用于细胞成像和离子检测的高效且 pH 值敏感的非常规发光聚合物
非常规发光材料(NLMs)是一种不含芳香族单元的有机发光材料。由于合成工艺简单、反应条件温和、亲水性和生物相容性好,NLMs 已引起广泛关注。然而,大量报告表明,NLMs 只能在高浓度和固态下有效发光,这限制了其在细胞成像领域的应用。本研究利用乙二醇二缩水甘油醚和含乙烯基团的胺化合物设计并合成了低聚物 P1、P2 和 P3,从而解决了这一局限性。这些低聚物在稀释溶液(0.1 毫克/毫升)中的发光效率高达 9.2%,是同类产品中最好的无卤素灯。此外,合成的低聚物还表现出与激发波长和浓度相关的发光强度、对温度和 pH 值变化的荧光响应,以及在稀溶液中识别 Fe3+、Cu2+ 和 Mo5+ 的能力。这些特性使它们有望用于细胞成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信