Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO3 Nanoparticles

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andrea Veciana, Sarah Steiner, Qiao Tang, Vitaly Pustovalov, Joaquin Llacer-Wintle, Jiang Wu, Xiang-Zhong Chen, Trust Manyiwa, Venecio U. Ultra, Beltzane Garcia-Cirera, Josep Puigmartí-Luis, Carlos Franco, David J. Janssen, Laura Nyström, Samy Boulos, Salvador Pané
{"title":"Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO3 Nanoparticles","authors":"Andrea Veciana, Sarah Steiner, Qiao Tang, Vitaly Pustovalov, Joaquin Llacer-Wintle, Jiang Wu, Xiang-Zhong Chen, Trust Manyiwa, Venecio U. Ultra, Beltzane Garcia-Cirera, Josep Puigmartí-Luis, Carlos Franco, David J. Janssen, Laura Nyström, Samy Boulos, Salvador Pané","doi":"10.1002/smsc.202400337","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"20 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain-shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.

Abstract Image

打破全氟辛烷磺酸链:使用 BaTiO3 纳米粒子压电催化分解全氟辛烷磺酸
全氟和多氟烷基物质(PFAS)在水系统中无处不在且具有持久性,对环境和健康构成了重大风险。本文研究了在超声辐照下使用钛酸钡纳米粒子进行压电催化降解和脱氟处理水中全氟辛烷磺酸(PFOS)的功效。研究表明,经过 6 小时的处理,全氟辛烷磺酸的降解率和脱氟率分别达到了 90.5% 和 29%,凸显了压电催化作为一种降解全氟辛烷磺酸方法的潜力。此外,降解产物的定量分析阐明了全氟辛烷磺酸的转化途径,提示了一种逐步缩短链的机制。这些发现强调了继续研究优化压电催化过程和探索与其他高级氧化方法协同作用的重要性,以有效应对全氟辛烷磺酸污染的挑战。这些努力对于推进可持续水处理战略和减轻与 PFAS 污染相关的环境和健康危害至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信