Transient Cooling Resets Circadian Rhythms of Locomotor Activity in Lizards

IF 2.9 3区 生物学 Q2 BIOLOGY
Sakimi Nagashima, Sho T. Yamaguchi, Zhiwen Zhou, Hiroaki Norimoto
{"title":"Transient Cooling Resets Circadian Rhythms of Locomotor Activity in Lizards","authors":"Sakimi Nagashima, Sho T. Yamaguchi, Zhiwen Zhou, Hiroaki Norimoto","doi":"10.1177/07487304241273190","DOIUrl":null,"url":null,"abstract":"Animals frequently experience temperature fluctuations in their natural life cycle, including periods of low temperatures below their activity range. For example, poikilothermic animals are known to enter a hibernation-like state called brumation during transient cooling. However, the knowledge regarding the physiological responses of brumation is limited. Specifically, the impact of exposure to low-temperature conditions outside the range of temperature compensation on the subsequent circadian behavioral rhythms remains unclear. In this study, we investigated the effects of transient cooling on the behavioral circadian rhythm in the non-avian reptile, the bearded dragon ( Pogona vitticeps). Under constant light (LL) conditions at 30 °C, the animals exhibited a free-running rhythm, and exposure to low temperatures (4 °C) caused a complete cessation of locomotion. Furthermore, we revealed that the behavioral rhythm after rewarming is determined not by the circadian phase at the onset or the duration of cooling, but by the timing of cooling cessation.","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Rhythms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304241273190","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Animals frequently experience temperature fluctuations in their natural life cycle, including periods of low temperatures below their activity range. For example, poikilothermic animals are known to enter a hibernation-like state called brumation during transient cooling. However, the knowledge regarding the physiological responses of brumation is limited. Specifically, the impact of exposure to low-temperature conditions outside the range of temperature compensation on the subsequent circadian behavioral rhythms remains unclear. In this study, we investigated the effects of transient cooling on the behavioral circadian rhythm in the non-avian reptile, the bearded dragon ( Pogona vitticeps). Under constant light (LL) conditions at 30 °C, the animals exhibited a free-running rhythm, and exposure to low temperatures (4 °C) caused a complete cessation of locomotion. Furthermore, we revealed that the behavioral rhythm after rewarming is determined not by the circadian phase at the onset or the duration of cooling, but by the timing of cooling cessation.
瞬时降温重置蜥蜴运动活动的昼夜节律
动物在其自然生命周期中经常经历温度波动,包括低于其活动范围的低温期。例如,已知嗜热动物在瞬时降温期间会进入一种类似冬眠的状态,即 "冬眠"。然而,有关冬眠生理反应的知识还很有限。具体来说,暴露于温度补偿范围之外的低温条件对随后的昼夜节律行为的影响仍不清楚。在这项研究中,我们调查了瞬时降温对非鸟类爬行动物胡须龙(Pogona vitticeps)行为昼夜节律的影响。在30 °C的恒定光照(LL)条件下,胡须龙表现出自由奔跑的节律,而暴露在低温(4 °C)条件下会导致运动完全停止。此外,我们还发现复温后的行为节律不是由降温开始时的昼夜节律相位或降温持续时间决定的,而是由停止降温的时间决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
8.60%
发文量
48
审稿时长
>12 weeks
期刊介绍: Journal of Biological Rhythms is the official journal of the Society for Research on Biological Rhythms and offers peer-reviewed original research in all aspects of biological rhythms, using genetic, biochemical, physiological, behavioral, epidemiological & modeling approaches, as well as clinical trials. Emphasis is on circadian and seasonal rhythms, but timely reviews and research on other periodicities are also considered. The journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信