Prakash Kumar, M. R. Ramesh, Mrityunjay Doddamani, S. Narendranath
{"title":"Enhanced Anti-corrosion and Anti-fouling Properties of Galvanized Iron Using Nanocomposite Hydrophobic Coatings","authors":"Prakash Kumar, M. R. Ramesh, Mrityunjay Doddamani, S. Narendranath","doi":"10.1007/s11665-024-10035-2","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposite hydrophobic coatings have garnered substantial interest in recent times due to their remarkable anticorrosion and antifouling attributes. These coatings are designed to repel water and thwart the adherence of contaminants, rendering them valuable for an array of applications, including self-cleaning surfaces, anti-icing coatings, marine protection, and biomedical uses. This study delves into the fabrication of nanocomposite coatings, incorporating mixed oxide nanoparticles of CuO-MgO, MgO-ZnO, and CuO-ZnO at varying weight percentages within a poly (lactic acid) (PLA) matrix. Surface morphology and elemental composition were examined through Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive x-ray Analysis (EDAX). The chemical composition of the coatings was assessed using Fourier Transform Infrared Spectroscopy (FTIR), revealing structural changes specific to PLA with Mg-Zn nanocomposite coating. The wettability studies indicate that the PLA/Cu-Mg coated sample exhibits superior hydrophobic properties, with a water contact angle (CA) of 98.2°. This value represents a remarkable 48.7 % increase compared to the bare Galvanised iron (GI) substrate. The coating's mechanical properties were assessed using scratch and adhesion tests. The efficacy of these coatings for anticorrosion and antifouling applications was gauged through comprehensive evaluations, in-vitro corrosion studies, egg white tests, and antibacterial tests. PLA/Mg-Zn nanocomposite coating exhibited exceptional performance in terms of scratch hardness and adhesion strength, whereas PLA/Cu-Zn nanocomposite coating exhibited better anticorrosion and antifouling properties.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10035-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocomposite hydrophobic coatings have garnered substantial interest in recent times due to their remarkable anticorrosion and antifouling attributes. These coatings are designed to repel water and thwart the adherence of contaminants, rendering them valuable for an array of applications, including self-cleaning surfaces, anti-icing coatings, marine protection, and biomedical uses. This study delves into the fabrication of nanocomposite coatings, incorporating mixed oxide nanoparticles of CuO-MgO, MgO-ZnO, and CuO-ZnO at varying weight percentages within a poly (lactic acid) (PLA) matrix. Surface morphology and elemental composition were examined through Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive x-ray Analysis (EDAX). The chemical composition of the coatings was assessed using Fourier Transform Infrared Spectroscopy (FTIR), revealing structural changes specific to PLA with Mg-Zn nanocomposite coating. The wettability studies indicate that the PLA/Cu-Mg coated sample exhibits superior hydrophobic properties, with a water contact angle (CA) of 98.2°. This value represents a remarkable 48.7 % increase compared to the bare Galvanised iron (GI) substrate. The coating's mechanical properties were assessed using scratch and adhesion tests. The efficacy of these coatings for anticorrosion and antifouling applications was gauged through comprehensive evaluations, in-vitro corrosion studies, egg white tests, and antibacterial tests. PLA/Mg-Zn nanocomposite coating exhibited exceptional performance in terms of scratch hardness and adhesion strength, whereas PLA/Cu-Zn nanocomposite coating exhibited better anticorrosion and antifouling properties.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered