Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li
{"title":"High-Temperature Oxidation, Corrosion, and Wear Resistance of Cr‐xAl Laser Coated on Metal Zr Surface","authors":"Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li","doi":"10.1007/s11665-024-09982-7","DOIUrl":null,"url":null,"abstract":"<p>Zr alloy with laser-melted Cr coatings exhibits excellent resistance to high-temperature oxidation and are widely used in the nuclear industry. To examine the impact of adding Al on the high-temperature oxidation performance, corrosion, and wear resistance of the coatings, Cr-<i>x</i>Al coatings with varying Al contents were applied to the pure Zr surface using laser cladding. Research results show that laser cladding coatings reveal good interdiffusion between the coatings and the substrate. The hardness and thickness of the coatings increase with the increase in Al content, but the quality of the coatings decreases with the increase of Al elements. A comparison of the high-temperature oxidation weight gain curve and morphology of different samples at 800–1100 °C shows that the oxidation weight gain of Cr-<i>x</i>Al coatings is about half of that of the uncoated substrate, exhibiting excellent high-temperature oxidation resistance. Conclusions drawn from friction morphology and volume loss indicate that the wear volume of Cr and Cr<sub>90</sub>Al<sub>10</sub> coatings is approximately 1/5 of the substrate, demonstrating significantly improved wear resistance compared to the substrate.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09982-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zr alloy with laser-melted Cr coatings exhibits excellent resistance to high-temperature oxidation and are widely used in the nuclear industry. To examine the impact of adding Al on the high-temperature oxidation performance, corrosion, and wear resistance of the coatings, Cr-xAl coatings with varying Al contents were applied to the pure Zr surface using laser cladding. Research results show that laser cladding coatings reveal good interdiffusion between the coatings and the substrate. The hardness and thickness of the coatings increase with the increase in Al content, but the quality of the coatings decreases with the increase of Al elements. A comparison of the high-temperature oxidation weight gain curve and morphology of different samples at 800–1100 °C shows that the oxidation weight gain of Cr-xAl coatings is about half of that of the uncoated substrate, exhibiting excellent high-temperature oxidation resistance. Conclusions drawn from friction morphology and volume loss indicate that the wear volume of Cr and Cr90Al10 coatings is approximately 1/5 of the substrate, demonstrating significantly improved wear resistance compared to the substrate.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered