Studies on cytocompatibility of human dermal fibroblasts on carbon nanofiber nanoparticle-containing bioprinted constructs

IF 4.703 3区 材料科学
Iruthayapandi Selestin Raja, Chuntae Kim, Moon Sung Kang, Yoon Ki Joung, Jong Hun Lee, Dong-Wook Han
{"title":"Studies on cytocompatibility of human dermal fibroblasts on carbon nanofiber nanoparticle-containing bioprinted constructs","authors":"Iruthayapandi Selestin Raja, Chuntae Kim, Moon Sung Kang, Yoon Ki Joung, Jong Hun Lee, Dong-Wook Han","doi":"10.1186/s11671-024-04110-9","DOIUrl":null,"url":null,"abstract":"<p>Functional nanocomposite-based printable inks impart strength, mechanical stability, and bioactivity to the printed matrix due to the presence of nanomaterials or nanostructures. Carbonaceous nanomaterials are known to improve the electrical conductivity, osteoconductivity, mechanical, and thermal properties of printed materials. In the current work, we have incorporated carbon nanofiber nanoparticles (CNF NPs) into methacrylated gelatin (GelMA) to investigate whether the resulting nanocomposite printable ink constructs (GelMA-CNF NPs) promote cell proliferation. Two kinds of printable constructs, cell-laden bioink and biomaterial ink, were prepared by incorporating various concentrations of CNF NPs (50, 100, and 150 µg/mL). The CNF NPs improved the mechanical strength and dielectric properties of the printed constructs. The in vitro cell line studies using normal human dermal fibroblasts (nHDF) demonstrated that CNF NPs are involved in cell-material interaction without affecting cellular morphology. Though the presence of NPs did not affect cellular viability on the initial days of treatment, it caused cytotoxicity to the cells on days 4 and 7 of the treatment. A significant level of cytotoxicity was observed in the highly CNF-concentrated bioink scaffolds (100 and 150 µg/mL). The unfavorable outcomes of the current work necessitate further study of employing functionalized CNF NPs to achieve enhanced cell proliferation in GelMA-CNF NPs-based bioprinted constructs and advance the application of skin tissue regeneration.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":null,"pages":null},"PeriodicalIF":4.7030,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04110-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional nanocomposite-based printable inks impart strength, mechanical stability, and bioactivity to the printed matrix due to the presence of nanomaterials or nanostructures. Carbonaceous nanomaterials are known to improve the electrical conductivity, osteoconductivity, mechanical, and thermal properties of printed materials. In the current work, we have incorporated carbon nanofiber nanoparticles (CNF NPs) into methacrylated gelatin (GelMA) to investigate whether the resulting nanocomposite printable ink constructs (GelMA-CNF NPs) promote cell proliferation. Two kinds of printable constructs, cell-laden bioink and biomaterial ink, were prepared by incorporating various concentrations of CNF NPs (50, 100, and 150 µg/mL). The CNF NPs improved the mechanical strength and dielectric properties of the printed constructs. The in vitro cell line studies using normal human dermal fibroblasts (nHDF) demonstrated that CNF NPs are involved in cell-material interaction without affecting cellular morphology. Though the presence of NPs did not affect cellular viability on the initial days of treatment, it caused cytotoxicity to the cells on days 4 and 7 of the treatment. A significant level of cytotoxicity was observed in the highly CNF-concentrated bioink scaffolds (100 and 150 µg/mL). The unfavorable outcomes of the current work necessitate further study of employing functionalized CNF NPs to achieve enhanced cell proliferation in GelMA-CNF NPs-based bioprinted constructs and advance the application of skin tissue regeneration.

Graphical abstract

Abstract Image

人真皮成纤维细胞在含碳纳米纤维纳米颗粒生物打印构建体上的细胞相容性研究
由于纳米材料或纳米结构的存在,基于功能性纳米复合材料的可印刷油墨可赋予印刷基体强度、机械稳定性和生物活性。众所周知,碳质纳米材料可以改善印刷材料的导电性、骨传导性、机械性能和热性能。在目前的工作中,我们将碳纳米纤维纳米颗粒(CNF NPs)加入甲基丙烯酸明胶(GelMA)中,研究由此产生的纳米复合可印刷油墨构建体(GelMA-CNF NPs)是否能促进细胞增殖。通过加入不同浓度的 CNF NPs(50、100 和 150 µg/mL),制备了两种可打印构建物,即含有细胞的生物墨水和生物材料墨水。CNF NPs 提高了打印结构的机械强度和介电性能。使用正常人真皮成纤维细胞(nHDF)进行的体外细胞系研究表明,CNF NPs 在不影响细胞形态的情况下参与了细胞与材料的相互作用。虽然 NPs 的存在在处理的最初几天不会影响细胞的活力,但在处理的第 4 天和第 7 天会对细胞造成细胞毒性。在高浓度 CNF 生物墨水支架(100 和 150 µg/mL)中观察到了明显的细胞毒性。由于目前工作的不利结果,有必要进一步研究采用功能化 CNF NPs 来增强基于 GelMA-CNF NPs 的生物打印构建体中的细胞增殖,并推进皮肤组织再生的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信