Enhanced Electrochemical Nitrogen Reduction via the Transport of Superacidic Microdroplets

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amir H. Aslambakhsh, Yuecheng Zhang, Sandra E. Kentish, Colin A. Scholes
{"title":"Enhanced Electrochemical Nitrogen Reduction via the Transport of Superacidic Microdroplets","authors":"Amir H. Aslambakhsh, Yuecheng Zhang, Sandra E. Kentish, Colin A. Scholes","doi":"10.1021/acsaem.4c01575","DOIUrl":null,"url":null,"abstract":"Electrocatalysts with a small overpotential hold a clear advantage in energy conversion efficiency. However, in electrochemical nitrogen reduction reactions (eNRRs), the primary challenge remains the issue of low selectivity. This study presents a gas-through cell assembly for eNRR to advance sustainable ammonia synthesis. The assembly introduces superacidic microdroplets via nitrogen gas, enhancing nitrogen concentration on the catalyst surface and amplifying nitrogen electrofixation rates. Catalyst deposition on a gas diffusion layer surface with a hydrophobic polymer binder enables microdroplet delivery to the working electrode surface through an ultrasonic nebulizer. Investigating parameters such as flow rate, water microdroplet content, temperature, pH, and applied potential provides valuable insights into eNRR performance. Unlike conventional H-cell setups, the proton concentration of the nebulizer flow emerges as the primary limiting factor in the gas-through cell assembly, impacting ammonia yield rate and Faradaic efficiency. Superacidic droplets enhance ammonia production, but further reducing pH increases hydrogen generation, lowering Faradaic efficiency toward ammonia. Higher temperatures accelerate ammonia production but reduce the Faradaic efficiency due to increased competition from the hydrogen evolution reaction, while elevated potentials initially boost eNRR but drop selectivity due to competing reactions. An optimum ammonia yield rate and Faradaic efficiency of 24.2 ± 2.4 <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mi&gt;&amp;#x3BC;&lt;/mi&gt;&lt;msub&gt;&lt;mi mathvariant=\"normal\"&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;msub&gt;&lt;mi&gt;mg&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;cata.&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi mathvariant=\"normal\"&gt;h&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 8.185em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 7.446em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1007.45em, 2.787em, -999.997em); top: -2.327em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝜇</span><span><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">g</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 3.582em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1002.67em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"display: inline-block; position: relative; width: 2.673em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.25em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">mg</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 1.253em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">cata.</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.315em; left: 2.673em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">−</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">h</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.315em; left: 0.514em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">−</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.332em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.316em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi><msub><mi mathvariant=\"normal\">g</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub><msup><msub><mi>mg</mi><mrow><mi>cata.</mi></mrow></msub><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi mathvariant=\"normal\">h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mi>μ</mi><msub><mi mathvariant=\"normal\">g</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub><msup><msub><mi>mg</mi><mrow><mi>cata.</mi></mrow></msub><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi mathvariant=\"normal\">h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></script> and 27 ± 4.4% were achieved, with 50 mL/min total flow rate and 50% volume microdroplet content, respectively; the ammonia synthesis rate reached as high as 37.6 ± 4 <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mi&gt;&amp;#x3BC;&lt;/mi&gt;&lt;msub&gt;&lt;mi mathvariant=\"normal\"&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;msub&gt;&lt;mi&gt;mg&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;cata.&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi mathvariant=\"normal\"&gt;h&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 8.185em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 7.446em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1007.45em, 2.787em, -999.997em); top: -2.327em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝜇</span><span><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">g</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 3.582em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1002.67em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"display: inline-block; position: relative; width: 2.673em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.25em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">mg</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 1.253em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">cata.</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.315em; left: 2.673em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">−</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">h</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.315em; left: 0.514em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">−</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.332em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.316em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi><msub><mi mathvariant=\"normal\">g</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub><msup><msub><mi>mg</mi><mrow><mi>cata.</mi></mrow></msub><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi mathvariant=\"normal\">h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mi>μ</mi><msub><mi mathvariant=\"normal\">g</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub><msup><msub><mi>mg</mi><mrow><mi>cata.</mi></mrow></msub><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi mathvariant=\"normal\">h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></script> at 85 °C, while the best Faradaic efficiency of 58.2 ± 9.3% was observed at pH = 2.8 ± 0.1 under −2 V applied potential and ambient pressure. This study enhances our understanding of gas-through electrochemical nitrogen fixation, providing invaluable insights for the development of efficient and sustainable ammonia synthesis strategies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01575","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalysts with a small overpotential hold a clear advantage in energy conversion efficiency. However, in electrochemical nitrogen reduction reactions (eNRRs), the primary challenge remains the issue of low selectivity. This study presents a gas-through cell assembly for eNRR to advance sustainable ammonia synthesis. The assembly introduces superacidic microdroplets via nitrogen gas, enhancing nitrogen concentration on the catalyst surface and amplifying nitrogen electrofixation rates. Catalyst deposition on a gas diffusion layer surface with a hydrophobic polymer binder enables microdroplet delivery to the working electrode surface through an ultrasonic nebulizer. Investigating parameters such as flow rate, water microdroplet content, temperature, pH, and applied potential provides valuable insights into eNRR performance. Unlike conventional H-cell setups, the proton concentration of the nebulizer flow emerges as the primary limiting factor in the gas-through cell assembly, impacting ammonia yield rate and Faradaic efficiency. Superacidic droplets enhance ammonia production, but further reducing pH increases hydrogen generation, lowering Faradaic efficiency toward ammonia. Higher temperatures accelerate ammonia production but reduce the Faradaic efficiency due to increased competition from the hydrogen evolution reaction, while elevated potentials initially boost eNRR but drop selectivity due to competing reactions. An optimum ammonia yield rate and Faradaic efficiency of 24.2 ± 2.4 μgNH3mgcata.1h1 and 27 ± 4.4% were achieved, with 50 mL/min total flow rate and 50% volume microdroplet content, respectively; the ammonia synthesis rate reached as high as 37.6 ± 4 μgNH3mgcata.1h1 at 85 °C, while the best Faradaic efficiency of 58.2 ± 9.3% was observed at pH = 2.8 ± 0.1 under −2 V applied potential and ambient pressure. This study enhances our understanding of gas-through electrochemical nitrogen fixation, providing invaluable insights for the development of efficient and sustainable ammonia synthesis strategies.

Abstract Image

通过超酸性微滴的传输提高电化学氮还原能力
过电位小的电催化剂在能量转换效率方面具有明显优势。然而,在电化学氮还原反应(eNRR)中,主要的挑战仍然是选择性低的问题。本研究提出了一种用于 eNRR 的气体通过电池组件,以推进可持续的氨合成。该组件通过氮气引入超酸性微滴,提高了催化剂表面的氮浓度并放大了氮电固定率。催化剂沉积在带有疏水性聚合物粘合剂的气体扩散层表面,通过超声雾化器将微滴输送到工作电极表面。通过对流速、微液滴含量、温度、pH 值和应用电位等参数的研究,可以深入了解 eNRR 的性能。与传统的 H-Cell 设置不同,雾化器水流的质子浓度是气体通过式电池组件的主要限制因素,会影响氨产量和法拉第效率。超酸性液滴可提高氨的生成,但进一步降低 pH 值会增加氢的生成,从而降低氨的法拉第效率。温度升高会加速氨的生成,但由于氢进化反应的竞争加剧,会降低法拉第效率。在总流速为 50 mL/min 和微滴体积含量为 50%的条件下,氨产量和法拉第效率分别达到了 24.2 ± 2.4 𝜇gNH3mgcata.-1h-1μgNH3mgcata.-1h-1μgNH3mgcata.-1h-1 和 27 ± 4.4%;氨合成率高达 37.6 ± 4 𝜇gNH3mgcata.-1h-1 和 27 ± 4.4%。6 ± 4 𝜇gNH3mgcata.-1h-1μgNH3mgcata.-1h-1μgNH3mgcata.-1h-1;在 -2 V 应用电位和环境压力下,pH = 2.8 ± 0.1 时的法拉第效率为 58.2 ± 9.3%。这项研究加深了我们对气体通过电化学固氮的理解,为开发高效、可持续的氨合成策略提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信