{"title":"Optical Surface Management System and BladderScan for Patient Setup During Radiotherapy of Postoperative Prostate Cancer.","authors":"Hao Chen,Yandong Liu,Songbin Qin,Guanghui Gan","doi":"10.1155/2024/3573796","DOIUrl":null,"url":null,"abstract":"Background: The precision of postoperative prostate cancer radiotherapy is significantly influenced by setup errors and alterations in bladder morphology. Utilizing daily cone beam computed tomography (CBCT) imaging allows for the correction of setup errors. However, this naturally leads to the question of the issue of peripheral dose and workload. Thus, a zero-dose, noninvasive technique to reproduce the bladder volume and improve patient setup accuracy was needed. Purpose: The aim of this study is to investigate if the setup method by combining Optical Surface Management System (OSMS) and BladderScan can improve the accuracy of setup and accurately reproduce the bladder volume during radiotherapy of postoperative prostate cancer and to guide CTV-PTV margins for clinic. Method: The experimental group consisted of 15 postoperative prostate cancer patients who utilized a setup method that combined OSMS and BladderScan. This group recorded 103 setup errors, verified by CBCT. The control group comprised 25 patients, among whom 114 setup errors were recorded using the conventional setup method involving skin markers; additionally, patients in this group also exhibited spontaneous urinary suppression. The errors including lateral (Lat), longitudinal (Lng), vertical directions (Vrt), Pitch, Yaw, and Roll were analyzed between the two methods. The Dice similarity coefficient (DSC) and volume differences of the bladder between CBCT and planning CT were compared as the bladder concordance indicators. Results: The errors in the experimental group at Vrt, Lat, and Lng were 0.17 ± 0.12, 0.22 ± 0.17, and 0.18 ± 0.12 cm, and the control group were 0.25 ± 0.15, 0.31 ± 0.21, 0.34 ± 0.22 cm. The rotation errors of Pitch, Roll, and Yaw in the experimental group were 0.18 ± 0.12°, 0.11 ± 0.1°, and 0.18 ± 0.13°, and in the control group, they were 0.96 ± 0.89°, 1.01 ± 0.86°, and 1.02 ± 0.84°. The DSC and volume differences were 92.52 ± 1.65% and 39.99 ± 28.75 cm3 in the patients with BladderScan, and in the control group, they were 62.98 ± 22.33%, 273.89 ± 190.62 cm3. The P < 0.01 of the above performance indicators indicates that the difference is statistically significant. Conclusion: The accuracy of the setup method by combining OSMS and BladderScan was validated by CBCT in our study. The method in our study can improve the setup accuracy during radiotherapy of postoperative prostate cancer compared to the conventional setup method.","PeriodicalId":9007,"journal":{"name":"BioMed Research International","volume":"37 1","pages":"3573796"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMed Research International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2024/3573796","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The precision of postoperative prostate cancer radiotherapy is significantly influenced by setup errors and alterations in bladder morphology. Utilizing daily cone beam computed tomography (CBCT) imaging allows for the correction of setup errors. However, this naturally leads to the question of the issue of peripheral dose and workload. Thus, a zero-dose, noninvasive technique to reproduce the bladder volume and improve patient setup accuracy was needed. Purpose: The aim of this study is to investigate if the setup method by combining Optical Surface Management System (OSMS) and BladderScan can improve the accuracy of setup and accurately reproduce the bladder volume during radiotherapy of postoperative prostate cancer and to guide CTV-PTV margins for clinic. Method: The experimental group consisted of 15 postoperative prostate cancer patients who utilized a setup method that combined OSMS and BladderScan. This group recorded 103 setup errors, verified by CBCT. The control group comprised 25 patients, among whom 114 setup errors were recorded using the conventional setup method involving skin markers; additionally, patients in this group also exhibited spontaneous urinary suppression. The errors including lateral (Lat), longitudinal (Lng), vertical directions (Vrt), Pitch, Yaw, and Roll were analyzed between the two methods. The Dice similarity coefficient (DSC) and volume differences of the bladder between CBCT and planning CT were compared as the bladder concordance indicators. Results: The errors in the experimental group at Vrt, Lat, and Lng were 0.17 ± 0.12, 0.22 ± 0.17, and 0.18 ± 0.12 cm, and the control group were 0.25 ± 0.15, 0.31 ± 0.21, 0.34 ± 0.22 cm. The rotation errors of Pitch, Roll, and Yaw in the experimental group were 0.18 ± 0.12°, 0.11 ± 0.1°, and 0.18 ± 0.13°, and in the control group, they were 0.96 ± 0.89°, 1.01 ± 0.86°, and 1.02 ± 0.84°. The DSC and volume differences were 92.52 ± 1.65% and 39.99 ± 28.75 cm3 in the patients with BladderScan, and in the control group, they were 62.98 ± 22.33%, 273.89 ± 190.62 cm3. The P < 0.01 of the above performance indicators indicates that the difference is statistically significant. Conclusion: The accuracy of the setup method by combining OSMS and BladderScan was validated by CBCT in our study. The method in our study can improve the setup accuracy during radiotherapy of postoperative prostate cancer compared to the conventional setup method.
期刊介绍:
BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject areas.