Xinting Luo , Ming Zhu , Yifei Zhang , Zewei Zheng , Tian Chen
{"title":"Self-triggered fuzzy trajectory tracking control for the stratospheric airship","authors":"Xinting Luo , Ming Zhu , Yifei Zhang , Zewei Zheng , Tian Chen","doi":"10.1016/j.asr.2024.08.036","DOIUrl":null,"url":null,"abstract":"<div><div>A self-triggered trajectory tracking control algorithm, which considers unknown disturbance and actuator saturation, has been studied to address the energy and onboard equipment life limitation problems of stratospheric airships. The controller is based on a backstepping-sliding mode method, utilizing the fuzzy logic systems and auxiliary systems to handle unknown disturbance and actuator saturation, respectively. Based on the continuity of the control law, the self-triggered condition is designed whose paradigm is used to build the fuzzy logic systems. Compared with the existing stratospheric airships event-triggered controller, continuous state detection and calculation are avoided. It is proved that the tracking errors and the weight matrix errors of the fuzzy logic system are uniformly ultimately bounded both at the trigger moment and within the trigger interval. Additionally, Zeno behavior is avoided without imposing additional parameter restrictions. Simulation results demonstrate the effectiveness of the proposed algorithm. Based on execution frequency, the proposed algorithm can conserve 98.3<span><math><mrow><mo>%</mo></mrow></math></span> of resources compared to the traditional algorithm and 97.5<span><math><mrow><mo>%</mo></mrow></math></span> of resources compared to the event-triggered algorithm.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027311772400855X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A self-triggered trajectory tracking control algorithm, which considers unknown disturbance and actuator saturation, has been studied to address the energy and onboard equipment life limitation problems of stratospheric airships. The controller is based on a backstepping-sliding mode method, utilizing the fuzzy logic systems and auxiliary systems to handle unknown disturbance and actuator saturation, respectively. Based on the continuity of the control law, the self-triggered condition is designed whose paradigm is used to build the fuzzy logic systems. Compared with the existing stratospheric airships event-triggered controller, continuous state detection and calculation are avoided. It is proved that the tracking errors and the weight matrix errors of the fuzzy logic system are uniformly ultimately bounded both at the trigger moment and within the trigger interval. Additionally, Zeno behavior is avoided without imposing additional parameter restrictions. Simulation results demonstrate the effectiveness of the proposed algorithm. Based on execution frequency, the proposed algorithm can conserve 98.3 of resources compared to the traditional algorithm and 97.5 of resources compared to the event-triggered algorithm.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.